
An Empirical Study on Low- and High-Level
Explanations of Deep Learning Misbehaviours

Tahereh Zohdinasab
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Università della Svizzera italiana

Lugano, Switzerland
Email: vincenzo.riccio@usi.ch

Paolo Tonella
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Abstract—Background: Most quality assessment approaches
for Deep Learning (DL) focus on finding misbehaviour-inducing
inputs. However, it is difficult to clearly understand the causes
of misbehaviours, due to the DL software opaqueness. Recent
research proposed different techniques to explain DL misbe-
haviours, producing input explanations either at a “low level”
(raw input elements) or at a “high level” (input features).
Aims: We aim to compare the similarity between different
explanations and assess to what extent they are understandable.
Method: We have conducted an empirical study involving 3 state-
of-the-art techniques for DL explanation in 13 configurations,
applied to 2 different DL tasks. We have also collected answers
from 48 questionnaires submitted to SE experts.
Results: Low- and high-level techniques provide dissimilar expla-
nations for the same inputs. However, experts deemed none of
the explanations as useful in 28% of the cases.
Conclusion: Despite the complementarity of existing explanations,
further research is needed to produce better explanations.

Index Terms—deep learning, software testing, explainable
artificial intelligence

I. INTRODUCTION

Deep Learning (DL) algorithms are pervasively adopted
in modern software systems, as they proved their ability to
solve complex tasks, including safety-critical ones. A large
part of the literature focuses on evaluating the quality of DL
systems by triggering misbehaviours, i.e., deviations from their
expected behaviour [1], [2]. Quality improvement requires
understanding the causes of such misbehaviours, which is still
an open problem [3], [4]. In fact, the increasing complexity of
DL models, trained on large datasets thanks to the availability
of scalable and high-performance infrastructures, introduces
the risk to make (mis-)predictions whose motivations are hard
to understand for humans. Recent DL algorithms, such as
Deep Neural Networks (DNNs), involve a massive amount of
computations and, thus, are “black boxes” to SE practitioners,
since it is hard for them to understand how DL software arrives
at a final decision [4], [5].

The lack of explainability of DL models may impact the
trust in their predictions and consequently hinder the adoption
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of such systems. A common issue of DL systems is that they
may take wrong decisions based on spurious correlations or
biases in the training data, e.g., classifying wolves images as
huskies due to the presence of snow on the background rather
than leveraging the characteristics of the animal [6].

Multiple techniques address the aforementioned issues and
explain DL systems’ (mis-)behaviours. Existing explanatory
techniques characterise the misbehaviour-inducing inputs ei-
ther at a low level, by identifying the raw input elements (e.g.,
image pixels) that are most relevant for the prediction, or at
a high level, in terms of abstract features that characterise the
input as a whole. We will refer to these techniques as follows:

Low Level Explanations identify a portion of the input
as relevant to a specific DL prediction. Such identification
is performed directly in the input space of the DL model.
Low-level techniques can provide explanations with different
aggregations, reporting, e.g., atomic input elements (e.g., pix-
els/words for an image/text) or contiguous regions of input
elements (e.g., sets of contiguous pixels/words). We consid-
ered two techniques with different aggregations, representing
the state of the art in the eXplainable AI (XAI) community:
LIME [6] and INTEGRATED GRADIENTS (IG) [7].

High Level Explanations identify relevant features that
characterise the whole input. Such identification is performed
in the feature space, a manually-defined abstraction of the
input space. As high-level technique, we considered FEATURE
MAPS (FM) [8] that characterise inputs through human-
interpretable features defined by domain experts. As an ex-
ample, for the hand-written digit recognition task, feature
maps characterise a misbehaviour by indicating how much the
hand stroke is bold or discontinous. FM proved to be highly
discriminative of misbehaviours [8], so they indeed provide an
explanation for misbehaviours.

In this work, we conduct an empirical study to investigate
the similarity between explanations provided by low- and
high-level techniques for the same sets of inputs. In this
way, we can understand whether and to what extent different
techniques are overlapping or complementary in explaining
DL misbehaviours. Explanatory techniques provide an input
characterisation that practitioners (e.g., software testers) can
use to understand why an input triggered a misbehaviour [9].
For this reason, we involved human experts in our study978-1-6654-5223-6/23/$31.00 ©2023 IEEE



Fig. 1: FM for a handwritten digit classifier. Axes quantify
boldness and discontinuity of the digits. Cells report the most
challenging input for the corresponding feature values, and the
cells highlighted with red circles are mis-classified.

to assess the understandability of the produced explanations,
i.e., whether human assessors consider the explanations as
effectively pointing to a plausible cause of the misbehaviour.

By leveraging input clustering and a novel ad-hoc similarity
metric, our results show that high- and low-level techniques
provide different explanations, i.e., they partition the same
inputs in different ways. For most of the inputs, human experts
chose either a low- or a high-level technique as effective in
explaining misbehaviours. These results show that high- and
low-level explanations are highly complementary. Results also
show that both explanations often do not match human judge-
ment, especially when explaining misbehaviours for image
classifiers, hence demanding for novel XAI techniques that can
cover the mis-explained cases. In summary, our paper makes
the following contributions:
• We introduce an empirical framework for comparing ex-

planatory techniques with different granularity levels;
• We evaluate explanatory techniques on DNNs within two

different domains, i.e., image and text classification;
• We perform a human study for comparing the understand-

ability of explanations for DNN misbehaviours;

II. BACKGROUND

A. Feature Map (FM)

A FM represents the space of the features that are relevant
for characterising the test inputs as a multi-dimensional grid,
in which each axis corresponds to a considered feature. A
feature can either be structural (i.e., characterising the input
itself) or behavioural (i.e., characterising the system’s output
when exercised by the given input). In particular, we refer
to high-level, human-interpretable input features defined by
experts [8], such as digit boldness and discontinuity for the
handwritten digit classifier shown in Figure 1. Inputs are
assigned a map cell, computed by measuring the metric that
quantifies each feature. Therefore, each cell contains the inputs
characterized by features that fall in the corresponding value

Fig. 2: (a) A sample mis-classified handwritten digit; (b)
Explanation by IG; (c) Explanation by LIME. (darker red
highlights higher contribution to the DNN output)

interval. The map granularity (i.e., the number of map cells in
each dimension) is a configurable parameter of a FM that can
be changed depending on the desired level of discrimination.

B. Integrated Gradients (IG)

Associating the prediction of a DNN to the input elements
that caused such prediction (i.e., input attribution) is a way of
explaining the model’s behaviour. For instance, in an image
classification model, an attribution method could reveal which
pixels of the image were responsible for a certain prediction.

The gradient of the output with respect to the input elements
(e.g., pixels) quantifies the impact of each input element on
the prediction of a DNN, therefore the gradient computation
can be considered as the most basic attribution method.

Sundararajan et al. [7] took an axiomatic approach for
attributing prediction of DNN to its input features, called IG.
They introduced two axioms to be preserved, Sensitivity and
Implementation Invariance, and proposed IG by considering
the straight-line path in DNN from the baseline (for example,
black image in image classification task) to the input and
cumulating the gradients at all points along the path for a given
number of steps. The number of steps is a hyperparameter
of this technique, representing the steps needed by IG in
the gradient approximation for each input image. The output
of this technique is a heatmap highlighting the important
elements in the input (e.g. pixels of an image or words in
a text). IG can be implemented to generate explanation for a
batch of inputs with predefined size. Figure 2 (b) shows a
heatmap generated by IG for an image classification task.

C. Local Interpretable Model-agnostic Explanations (LIME)

LIME provides a low-level explanation for the predictions
of any classification model by identifying the portions of
the input that mostly affect the model’s output. It produces
an explanation for each input instance by mimicking the
behaviour of the model in the neighbourhood of the input.
LIME perturbs the input to train a linear model around the
input itself and generates a predefined number of samples,
while the model under test is treated as a black box. The
number of samples can be customized, as it can be set as a
hyperparameter of the technique. Such perturbed input regions
are called super-pixels and their impact on the linear model’s
decision determines their importance in the final explanation.
LIME is applicable to both images and texts and provides
a visual representation of the generated explanations. It has
been used in different studies to understand the reasons behind



Fig. 3: An overview of our evaluation pipeline

DNN decisions [10]–[12]. Figure 2 (c) shows an example of
explanation generated by LIME for a hand written digit 5.

III. COMPARING HIGH- AND LOW-LEVEL EXPLANATIONS

To compare high-level and low-level explanations, we de-
signed the evaluation pipeline shown in Figure 3. Initially,
we gather the inputs to be explained. Such inputs can be
either obtained directly from an existing dataset or can be
automatically generated by test generators (Sample Generation
step). For each input, we obtain high-level explanations in the
Feature Map Computation step, i.e., we compute the FM cells
it belongs to. In this way, each FM cell represents a cluster
of inputs sharing similar high-level features. To obtain low-
level explanations, we perform the Explanation Generation
step, in which we apply low-level techniques that generate
heatmaps. Moreover, we perform a Dimensionality Reduction
step on low-level explanations to generate lower-dimensional
latent vectors. A latent vector is the projection of an input onto
the latent space. Using latent vectors allows us to avoid high
variability and sparseness in the high-dimensional heatmap
explanations. Indeed, a sparse, highly variable representation
of the inputs would prevent the construction of meaningful
clusters of the inputs, as in the higher-dimensional space all
distances/similarities tend to degenerate to the extreme values,
giving raise to degenerate clusters. Since both low-level ex-
planatory techniques and dimensionality reduction approaches
are non-deterministic, we repeat the low-level explanation
generation multiple times. To make the explanations provided
by low-level techniques comparable to the high-level ones, we
cluster low-level explanations by using a Clustering technique.
In the Clustering step, we group together similar heatmap
explanations, or the corresponding latent vectors (to address
the sparseness problem). In the Comparison step, we assess
how similar the clusters generated by high-level and low-
level techiques are, based on our custom definition of a Gini
similarity metric, which is close to zero when the elements
grouped together by one technique are scattered across many
clusters produced by the other technique and is equal to one
when the elements grouped together by one technique are all
in the same cluster produced by the other technique. Finally,
we submit a questionnaire to experts in order to evaluate the
understandability of explanations in the Human Assessment
step. In the following, we provide a detailed explanation of
each step of our evaluation pipeline.

Sample Generation: Since we are interested in investigat-
ing DL misbehaviours, we resort to failure-inducing inputs
artificially crafted by test generators, besides the ones from
the original dataset. In this way, we can collect enough
misbehaviour-inducing inputs even for robust DL models, i.e.,
for which there are only a few misbehaviours in the original
test set. By considering both types of inputs, we perform our
study on a sufficient number of misbehaviours, covering a
diversified variety of samples. We do not use the train set
because we mimic the testing phase, when developers evaluate
a DL model against new, unseen inputs

FM Computation: To provide high-level explanations, we
used FM. FEATURE MAPS can be generated with different
feature combinations and numbers of dimensions. For the
sake of completeness, we considered all possible numbers
of dimensions and feature combinations when computing the
FM. In this way, we can discuss the similarity between high-
and low-level explanations at increasing FM dimensionality
(e.g., when moving from one isolated feature to a combination
of multiple features). For each input obtained in the Sample
Generation step, we compute its corresponding feature values,
so we can assign each input to the corresponding FM cell,
i.e., the map cell whose value intervals contain the measured
input feature values. We use the non-empty FM cells, i.e.,
those containing at least one misbehaviour-inducing input, as
high-level explanation clusters.

Explanation Generation: In this step, we consider two
popular XAI techniques as our low-level explanatory tech-
niques: IG for fine-grained explanations and LIME for coarse-
grained explanations. We apply the two considered XAI tech-
niques separately on the generated inputs and extract heatmaps
as vectors representing the relevance of input elements/regions.

Dimensionality Reduction: Beside the heatmap explana-
tions in the original input space, we consider explanations
projected onto a latent space, i.e., latent vectors. In fact, by
projecting heatmaps to latent space, we keep a lower number
of dimensions, which are more representative of the meaning-
ful directions of variability of the inputs, possibly avoiding
the construction of degenerate clusters. For generating latent
vectors, we choose the t-SNE algorithm [13], [14], since it
projects similar inputs to neighbouring points and dissimilar
inputs to distant points with high probability.

We generate latent vectors in two modes: (1) global la-
tent: the projections of explanations in the latent space are
computed considering inputs from all output classes; (2) local
latent: the projections of explanations in the latent space are
computed considering only inputs from a specific class. While
the local latent space can achieve good separation of inputs
from a specific class, the global latent space aims at separating
both different classes of inputs and inputs within each class.
The former is better if the generated inputs stay confined
within one class, while the latter might be beneficial when the
generated inputs tend to cross the borders between classes.

Clustering: The explanations generated by high-level tech-
niques are FM cells based on high-level feature values of
the inputs, whereas low-level explanations are vectors of



contributions of low-level input elements/regions. Therefore,
there is no way to directly measure the similarity between
explanations at these two different abstraction levels. To make
the comparison feasible, we propose to compare the clusters
of explanations instead of the raw explanations (which are
uncomparable). The underlying idea is the following: if two
explanatory techniques group the inputs in a similar way, then
they can be deemed similar; otherwise they are different.

For high-level explanations we use map cells as clusters.
For low-level explanations, we need to group the explanations
by using clustering approaches in such a way that objects in
the same group, i.e., a cluster, are more similar to each other
than to those in other groups. There exist multiple clustering
techniques in the literature [15]–[18]. For our study, we rely
on the Affinity Propagation clustering technique [18] which
recursively exchanges messages between data points; such
messages encode the affinity of one point when choosing
another point as its neighbor. The recursive exchange of
messages continues until a set of highly-affine groups emerges.
The main advantage of this clustering technique is that, unlike
other techniques such as K-Means [15], (1) all the points are
considered as possible centroids of the clusters, which avoids
biasing the clusters to some randomly chosen points, used
as the initial centroids; and (2) there is no need to provide
the number of clusters to the algorithm in advance. In this
step, we cluster the explanations in the three considered input
spaces: original, consisting of raw explanation vectors; global
latent, consisting of globally projected explanations; and local
latent, consisting of locally projected explanations. Of course,
each considered space may lead to different clusters, based on
the distribution of the inputs in the corresponding space. The
output of this step consists of the clusters generated for the
fine-grained and the coarse-grained explanations, in each of
the considered input spaces.

Comparison: In the previous steps, we generated high-
level and low-level explanations for the considered inputs and
processed them to generate clusters. The main evaluation step
of our study is the comparison of these explanation clusters.
Existing similarity or distance metrics to compare two sets
of clusters, such as the MoJo metric [19], are based on the
transformation of one cluster into the other. The computational
complexity involved in the computation of these metrics is
typically high (exponential in the worst case), but what is even
more concerning in our usage scenario is that such metrics are
highly sensitive to the number of clusters, and when there is a
disparity in such number the distance tends to grow (similarity
tends to decrease), because more transformation steps are
needed to change one clustering into the other. However, a
high disparity in the number of clusters is not necessarily
an indicator of distance in our case. In fact, if all clusters
in one set are pure, because their elements come from the
same clusters in the other set, we deem the two clusterings
very similar between each other, regardless of any disparity in
the number of clusters. To capture such a notion of similarity
between two sets of clusters, we define a novel metric based
on Gini Impurity (GI) [20]. GI reflects the impurity level

of a group of entities by indicating the probability that two
samples from the given group have different labels, i.e., belong
to different classes. So, to compute GI we need to define
what are the groups and what are the labels. In our setting,
when comparing two sets of clusters (low- vs high-level
explanations), groups are the clusters identified in one set
(source clustering), while labels are the cluster identifiers from
the other set (target clustering). Hence, the impurity of a group
of data D (i.e., a cluster from the source clustering) against
the target clustering A can be measured as follows:

GI(D, A) = 1−
|A|∑
i=1

p2Ai (1)

where |A| is equal to the number of clusters in A, and pAi is
the probability that cluster id i of clustering A occurs in dataset
D. GI ranges between 0 and 1, being 0 when D contains no
impurity (i.e., all its elements belong to the same cluster from
A) and being minimum when D is uniformly impure (i.e., all
its elements belong to a different cluster from A).

Let us consider cluster CB1 in Figure 4 (d). GI of CB1
against clustering A (Figure 4 (a)) is computed as follows:
GI(CB1, A) = 1−

∑3
i=1 p

2
Ai = 1−(1+0+0) = 0. (pA1 = 1

is the probability of cluster CA1 to be found in cluster CB1;
pA2 = pA3 = 0 is the probability to find CA2, CA3).

We can now aggregate the computation of GI across all
clusters that belong to the source clustering B, using the clus-
ters in A as labels, by taking the average cluster impurity. The
complement of such average impurity gives a Gini Similarity
(GS) metric between clusterings, ranging between 0 and 1,
where 1 is achieved when all clusters in B are pure (i.e., have
GI = 0):

GS(B,A) = 1− 1

|B|

|B|∑
i=1

GI(CBi, A) (2)

where |B| is equal to the number of clusters in clustering B,
and Ci is the ith cluster in clustering B.

Figure 4 (a) and (b) present two examples of clusterings
A and B. To compute the similarity between A and B, we
consider the clustering B as source and then we color (and
label) it elements based on the clusters in clustering A (see
Figure 4 (d)). GS(B,A) = 1− 1

4 (GI(CB1, A)+GI(CB2, A)+
GI(CB3, A)+GI(CB4, A)) = 1− 1

4 (0+
1
2 +

4
9 +0) = 0.76.

GS is not symmetric by definition, as the labels assigned
to the elements of one clustering depend on the other, and
such labeling changes when we swap the two clusterings in
the computation. For the example in Figure 4, let us now
compute the similarity between A and B. We now consider
the clustering A as source and we color (label) its elements
based on the clusters they belong to in clustering B (see
Figure 4 (c)). GS(A,B) = 1− 1

3 (GI(CA1, B)+GI(CA2, B)+
GI(CA3, B)) = 1− 1

3 (
4
9 + 1

2 + 4
9 ) = 0.53.

To deal with the asymmetric nature of our metric, we report
the maximum of the two GS values obtained when considering
source and target clusterings in both orders:

Similarity(A,B) = Max(GS(A,B), GS(B,A)) (3)



Fig. 4: Gini Impurity (GI) computation with source B and
target A (col. (d), (a)), and with source A and target B (col.
(c), (b)); colors and text in (d), (c) are used to indicate the
labels obtained from the target clusters (resp. (a), (b))

Considering clusters A and B in Figure 4,
Similarity(A,B) = Max(0.53, 0.76) = 0.76

Human Assessment: In this step, we conduct a human
study to investigate the understandability of explanations.
We design a survey and provide human assessors with low-
and high-level explanations of misbehaviour-inducing inputs.
Then, we ask the assessors whether the shown explanations
effectively indicate the cause of the misbehaviour.

IV. EXPERIMENTAL EVALUATION

A. Research Questions

RQ1 (Similarity): How similar are high-level and low-level
explanations of DL misbehaviours?

High- and low-level approaches provide explanations about
failure-inducing inputs from different perspectives. We aim to
measure the similarity of these different explanations to assess
to what extent they are comparable or complementary.

Metrics: To assess how similar the explanations generated
by high-level and low-level techniques are, we compare the
way inputs are grouped by similar explanations. To this
aim, we measure (1) the number of clusters generated by
each technique and (2) the similarity between these clusters
according to our custom Gini Similarity (GS) metric. If two
techniques produce explanations that group the inputs in a
similar way (i.e., they produce nearly the same number of
clusters that are pairwise very similar to each other), then they
can be deemed similar; otherwise they differ, as they partition
the input vectors in a different way.
RQ2 (Understandability): How understandable are high-
level and low-level explanations of DL misbehaviours?

TABLE I: Hyperparameters and configuration details

MNIST IMDB

Number of cells per feature 5 5
Number of runs 10 10
t-SNE components 2 2
t-SNE perplexity 1 1
Similarity metric Euclidean Euclidean
Input size 28× 28 2000
Vocabulary size - 10000
Number of inputs 250 250
Target class label “5” “positive”
Number of steps for IG 50 50
Batch size for IG 64 100
Number of samples for LIME 100 5000
Explanation library Xplique Alibi, Lime

Since high-level techniques quantify high-level input fea-
tures, while low-level approaches highlight low-level elements
of the inputs, it is important to investigate whether these two
types of explanations are equally understandable to humans.

Metrics: Effectively assessing the understandability of an
explanation requires humans in the loop. Therefore, we de-
signed a human study to assess if explanations are under-
standable and if they match the human expectations. We count
the number of cases in which the explanation Matches with
Human (MH), i.e., the number of times human assessors select
a given explanation as possibly pointing to the cause of the
misbehaviour.

B. Subject Systems

In our study, we consider two DL systems belonging to
different domains, i.e., handwritten digit recognition and sen-
timent analysis, which have been widely used in the literature
to generate explanations for DL systems [6], [7].

The MNIST system is a classifier which recognises
handwritten digits within image inputs from the MNIST
dataset [21]. This DL system accepts greyscale images as
inputs and predicts the corresponding digit classes (from 0
to 9). We considered the convolutional DNN architecture
provided by Keras [22] and trained it on the the MNIST
training set using Tensorflow v2. More specifically, we used
its default configuration, i.e. 12 epochs, batches of size 128,
a learning rate equal to 1, and the Adam optimizer, which
achieved 99.8% test accuracy.

The IMDB system classifies textual inputs based on their
sentiments. It accepts the text of a movie review as input and
predicts if it is positive or negative. We adopted a convolutional
DNN with an embbeding layer provided by Keras [23], and
we used tokenised (with vocabulary size equals to 10000) and
padded text with length limited to 2000 words. We trained the
model on the IMDB training set in Tensorflow v2. We used
10 epochs, batches of size 32 with early stopping, and the
Adam optimizer, achieving 88.0% test accuracy.

C. Experimental Procedure

To obtain the explanations, we adopted the pipeline de-
scribed in section III (configuration reported in Table I).



As misbehaviour-inducing inputs, for MNIST, we used
a set of 250 inputs belonging to the same ground-truth
class (i.e., digit “5”), either from the test set or generated
by test input generators. We used the DeepJanus [24] and
Sinvad [25] test generators since they (1) belong to different
families of approaches (i.e., model-based and DL generative,
respectively), and (2) have been demonstrated to produce the
highest ratio of valid input that preserve their ground-truth
label [26]. In particular, we could obtain only 11 misclassified
inputs belonging to the class digit “5” from the MNIST test
set, due to high accuracy of the considered model. Therefore,
we also included 35 inputs generated by DeepJanus and
204 inputs generated by Sinvad, to have enough and diverse
misbehaviour-inducing inputs for our study.

For IMDB, we also used a set of 250 inputs either from
the test set or generated by test input generators, all belonging
to the same class (“positive” sentiment). We obtained 1924
misclassified inputs belonging to the class “positive” from the
test set. Then, to have more diverse inputs we also included
663 inputs generated by the considered input generator. In
particular, we used the DeepHyperion [8] tool since it supports
the generation of textual inputs. Finally, we randomly selected
250 inputs from the overall set of 2587 candidate inputs.

To obtain low-level explanations, we used three open source
libraries for images and textual inputs, i.e., Xqlique [27] for
image, and Alibi [28] and Lime [29] for text.

To obtain high-level explanations, we needed high-level
features for each considered domain. For MNIST inputs, we
used the three high-level features defined by Zohdinasab et
al. [8] in their study involving human experts, i.e., (1) Lumi-
nosity (Lum): number of light pixels in the image, obtained by
counting the pixels whose value is above 127; (2) Orientation
(Or): vertical orientation of the digit, obtained by computing
the angular coefficient of the linear regression of the non-
black pixels; (3) Moves (Mov): sum of the Euclidean distances
between pairs of consecutive segments of the digit, the dis-
tance being zero when consecutive segments are connected and
greater than zero when there are discontinuities. For IMDB
reviews, we defined three features: (1) Positive word count
(Pos): number of words in the text with positive polarity,
obtained by counting the words tagged as positive in the
English Opinion Lexicon [30]; (2) Negative word count (Neg):
number of words in the text with negative polarity, obtained by
counting the words tagged as negative in the English Opinion
Lexicon; (3) Verb count (Verb): number of verbs in the text,
a proxy for the text complexity, computed by counting the
words with a verb tag, according to the part-of-speech (POS)
tagging produced by the NLTK library.

Our experimental procedure consists of the following two
steps: (1) high- and low-level explanations comparison, using
clustering; and (2) human assessment of the explanations, by
means of two surveys: one for MNIST and one for IMDB.

1) High- and Low-Level Explanations Comparison: We
generate FEATURE MAPS with 1, 2, and 3 dimensions re-
scaled to size 5 per dimension. We selected 5 as number of
cells since the number of clusters (i.e., filled cells) with this

configuration is comparable to the number of clusters obtained
through low-level techniques, which allowed us to interpret
each cell as a cluster without any need for an additional
clustering step. We ran FM generation only once since the
clusters (i.e., the cells) are deterministic.

As regards low-level explanations, we ran IG and LIME
approaches 10 times each, since the corresponding clusterings
are obtained trough t-SNE, which is non-deterministic. To
obtain the best configuration for the t-SNE hyperparameters
(i.e., number of components and perplexity), we performed
preliminary runs with different configurations and selected
the one producing the highest silhouette score. The best
configurations of the hyperparameters of IG and LIME are
reported in Table I.

For clustering the low-level explanations, we used the
Euclidean distance to compute the similarity matrices, where
distances are computed in three different vector spaces: orig-
inal, global latent, and local latent (see Figure III). In
the original space, we consider heatmaps as vectors to be
clustered. For MNIST, a heatmap is a 28× 28 matrix, where
each vector component eij is the contribution value of the pixel
occupying the i-th row and the j-th column in the image. The
matrix is flattened into a vector before applying clustering.
For IMDB, a heatmap is a vector of size 10000, the size
of the vocabulary used by the tokenizer (which maps each
word to the corresponding one-hot encoding) and each vector
component ei is the contribution value of the i-th word in
the text. In both global latent and local latent spaces, we use
vectors of size 2, the same number of dimensions that was
found to be optimal for the t-SNE algorithm.

2) Human Assessment of the Explanations: To determine
whether an explanation is human-understandable, we asked
humans to determine which of the explanations provided
them meaningful information about the reason why the model
misbehaves for specific inputs. We published two surveys (one
for each case study) by using Qualtrics, a survey platform
commonly used also for software engineering research [31],
[32]. To ensure the assessment quality, we selected software
engineering researchers and allowed each of them to devote
up to 1 week to answer the questions and take at most 1
questionnaire for each case study.

For MNIST, we created a survey with 10 questions to
be answered by human assessors. To this aim, we randomly
selected 10 ”5” digit images from the MNIST data set which
are misclassified by the considered model and we computed
high-level and low-level explanations for each of them. More
specifically, for the high-level explanations we reported the
feature values provided by the three-dimensional FM and
for the low-level explanations we visualized IG and LIME
heatmaps, overlayed on the original digit images. We used
3D FEATURE MAPS for the human study to include all the
available features for the high-level explanations. For each
MNIST image, we showed the human assessors the possible
explanations (i.e. FM, IG, and LIME) and asked them to
answer the following question: ”Below is a digit ”5” that
was incorrectly believed to be another digit by the computer.



Fig. 5: MNIST input from the human study for which the
majority selected IG.

Fig. 6: IMDB input from the human study for which the
majority selected both FM and IG explanations.

Please, select a possible explanation for such a mistake (you
are allowed to select more than one explanation if they
make sense, or none of them if they do not make sense)”.
Figure 5 shows a misclassified digit ”5” with the three different
explanations.The assessors could select the explanations that
they considered as a plausible reason for the misbehaviour.
In particular, the assessors were allowed to choose zero or
more explanations. We collected 29 answers from the human
assessors in the MNIST survey.

For IMDB, we created a survey with 10 questions by
randomly selecting 10 positive reviews from the IMDB
dataset, which are misclassified by the model. For the high-
level explanations, we reported the feature values provided
by the three-dimensional FM and the explanations generated
by LIME and IG and we visualised the words with highest
contributions to negative and positive sentiments in a bar chart
(i.e., we reported up to 10 most contributing words with non-

TABLE II: RQ1 - Number of clusters (NC) for high-level
techniques for MNIST and IMDB.

MNIST IMDB
HL Technique Features NC Features NC

Feature map 3D Mov-Lum-Or 31 Pos-Neg-Verb 27

Feature map 2D
Mov-Lum 17 Pos-Neg 15
Lum-Or 15 Neg-Verb 14
Or-Mov 14 Pos-Verb 12

Feature map 1D
Mov 5 Pos 5
Lum 5 Neg 5
Or 5 Verb 5

TABLE III: RQ1 - Number of clusters (NC) for low-level
techniques for MNIST and IMDB.

MNIST IMDB
LL Technique Input space NC [min, max] NC [min, max]

IG
Original 44.0 [44, 44] 35.1 [35, 36]
Global Latent 18.7 [17, 20] 14.8 [12, 18]
Local Latent 20.5 [19, 21] 18.2 [16, 22]

LIME
Original 39 [37, 44] 38.5 [37, 39]
Global Latent 17.7 [16, 19] 17.3 [16, 19]
Local Latent 19.0 [17, 21] 18.3 [16, 21]

zero contribution). For each text, we asked humans to answer
the following question: ”Below is a positive review that was
incorrectly believed to be a negative review by the computer.
Please, select a possible explanation for such a mistake (you
are allowed to select more than one explanations if they make
sense, or none of them if they do not make sense)”. Also in
this case, we showed explanations provided by the FM, IG,
and LIME (as shown in Figure 6). In the IMDB survey we
collected 19 answers from the human assessors.

V. RESULTS

A. RQ1 (Similarity)

Tables II and III report the number of clusters generated by
each explanatory technique. For each low-level approach, we
report the minimum and maximum number of clusters (NC)
in order to show their variability due to non-determinism.

For MNIST, the number of clusters generated by FM 3D is
31, larger than the number of clusters generated by FM with
any other dimensionality (i.e., 1D and 2D). Not surprisingly,
the lower the dimensionality, the lower the number of clusters.
In fact, all the FM dimensions were rescaled to size 5, leading
to a lower number of cells for lower dimensionality maps (e.g.,
in 3D maps there are at most 125 cells to fill, while for 1D
maps there are only 5 cells). The highest difference between
high- and low-level techniques is between FM 1D and IG in
the Original input space (39 clusters). Instead, the NC value
for both FM 2D and 3D is comparable to the number of
clusters generated by low-level techniques (resp. global/local
latent space and original space).

As regards IMDB, the highest difference between high- and
low-level techniques is the one between FM 1D and LIME in
the Original input space, i.e., 33.5. Also for IMDB, the closest



TABLE IV: RQ1 - Comparing high-level and low-level expla-
nations’ Similarity (Sim); boldface indicate statistical signifi-
cance when comparing original with latent space similarities.

MNIST IMDB
HL
technique

LL
technique

Input space Features Sim Features Sim

Feature map
3D

IG
Original

Mov-
Lum-Or

0.70

Pos-
Neg-
Verb

0.74
Global Latent 0.55 0.68
Local Latent 0.55 0.66

LIME
Original 0.55 0.81
Global Latent 0.53 0.66
Local Latent 0.53 0.68

Feature map
2D

IG
Original

Mov-
Lum

0.71

Pos-Neg

0.74
Global Latent 0.40 0.52
Local Latent 0.41 0.53

LIME
Original 0.56 0.77
Global Latent 0.39 0.55
Local Latent 0.40 0.56

Feature map
2D

IG
Original

Lum-or

0.76

Neg-
Verb

0.78
Global Latent 0.52 0.60
Local Latent 0.52 0.60

LIME
Original 0.65 0.82
Global Latent 0.49 0.61
Local Latent 0.49 0.61

Feature map
2D

IG
Original

Mov-Or

0.80

Pos-
Verb

0.77
Global Latent 0.54 0.57
Local Latent 0.54 0.59

LIME
Original 0.64 0.81
Global Latent 0.52 0.61
Local Latent 0.51 0.63

Feature map
1D

IG
Original

Mov

0.83

Pos

0.80
Global Latent 0.49 0.64
Local Latent 0.52 0.65

LIME
Original 0.68 0.83
Global Latent 0.50 0.66
Local Latent 0.54 0.69

Feature map
1D

IG
Original

Lum

0.78

Neg

0.82
Global Latent 0.47 0.63
Local Latent 0.53 0.65

LIME
Original 0.69 0.84
Global Latent 0.45 0.67
Local Latent 0.50 0.67

Feature map
1D

IG
Original

Or

0.94

Verb

0.87
Global Latent 0.82 0.71
Local Latent 0.83 0.73

LIME
Original 0.89 0.89
Global Latent 0.82 0.72
Local Latent 0.83 0.74

NC values between the two classes of techniques is produced
by FM 2D and low-level techniques in the global/local latent
space. The number of clusters for FM 3D is comparable to
low-level techniques in the original space.

For both case studies, IG produces a more stable number
of clusters in the original space due to its deterministic
nature (i.e. it is based on a mathematical equation which
computes linear interpolation from a baseline), whereas there
are some variations for global and local latent spaces due to
the non-deterministic nature of the t-SNE algorithm. Instead,
LIME always generates slightly different explanations across
multiple runs, because of the randomness introduced by input
sampling and surrogate model training during the explanation

computation, and thus produces a variable number of clusters.
Table IV reports the similarity between clusterings. To

assess the statistical significance of the comparisons between
different configurations, we performed the Mann-Whitney U-
test and measured the effect size by means of the Vargha-
Delaney’s A12 statistic [33]. For both MNIST and IMDB
(fifth and seventh columns), the similarity values between
high- and low-level techniques are almost always significantly
higher (p-value < 0.05, large effect size) when considering
the original input space, rather than global and local latent
spaces within the same configuration (i.e., up to 0.34 more
in the comparison between FM 1D and IG for MNIST).
This result may be due to the fact that the heatmaps in the
original space retain more feature-related information than
their projections into the latent space. For MNIST, the highest
similarity is achieved between FM 1D (Orientation) and IG
in the original space (0.94). For IMDB, the highest clustering
similarity is between FM that considers the Verb feature only
and LIME explanations in the original space (0.89). The most
different partitions between low- and high-level techniques
(i.e., lowest similarity) are obtained when considering FM 2D
and low-level explanations in the latent space (either local or
global). In fact, for MNIST we have the lowest similarity
when considering Mov-Lum maps and LIME in the global
latent space (0.39), whereas for IMDB the lowest similarity
is between Pos-Neg maps and IG in the global latent space.

On average, the similarity between FM and IG, across input
spaces and subjects, is 0.65, while it is 0.64 with LIME. These
are relatively low values. As a reference, such similarity values
are obtained when a cluster with 100 elements contains 23
impure elements, i.e., 23 elements that are assigned a different
cluster by the other technique (see Equation 2).

RQ1: High-level and low-level techniques partition
inputs in different ways. Despite FM 2D and low-level
techniques in the global latent space produce nearly the
same number of clusters, those show low similarity.
Likewise, FM 1D produces clusterings similar to the
ones obtained by low-level techniques in the original
space, but with very different number of clusters.

B. RQ2 (Understandability)

Table V shows the results extracted from questionnaires
for MNIST and IMDB. Each column reports the number
of assessors who chose the explanation provided by each
considered technique (choices were not mutually exclusive).
The last column highlights the cases for which no explanation
was selected by the assessor. Since each assessor can select 0
to 3 explanations in each question, the sum of the values in
each row does not correspond to the number of assessors.

Table V (left) reports the answers we collected for MNIST.
IG was selected more than other explanations 4 times, e.g.,
for Q2 IG has been chosen 18 times more than the others.
The explanations by FM are selected more than the other
explanations 4 times. LIME was selected more than the others



TABLE V: RQ2 - Number of Matches with Human Explana-
tions (MH); ‘None’ indicates the number of cases when no
match was found.

MH
MNIST IMDB

Q# FM 3D IG LIME None FM 3D IG LIME None

Q1 12 2 10 8 2 13 3 3
Q2 5 23 5 1 5 3 3 9
Q3 4 7 9 12 11 17 8 0
Q4 6 7 5 14 6 15 3 2
Q5 3 15 2 11 10 14 7 1
Q6 7 6 4 14 12 15 8 0
Q7 7 11 7 10 0 14 5 3
Q8 9 5 8 13 11 14 12 1
Q9 5 1 9 17 6 8 4 4
Q10 13 10 5 8 11 12 7 2
Sum 71 87 64 108 74 125 60 25

in only 2 questions. We can conclude that there is no technique
clearly more understandable than the others for explaining
digit misclassications, according to human assessors. Overall,
the explanations generated by IG match more frequently with
the human expectations, as they have been selected 30% of the
times by the assessors. FM explanations and LIME heatmaps
have been selected 24% and 22% of the times. However, in
more than one third of the answers the assessors chose none
of the explanations. This result suggests that there is large
room for improvement in explaining image misclassifications.
Table V (right) reports the answers for IMDB. IG was selected
more than the other techniques 9 times, while FM was selected
more than the others in the remaining case (i.e., Q2). Instead,
LIME explanations were never selected more often than the
other techniques. IG was selected the highest number of times
by human assessors, i.e., 66% , followed by FM with 39% and
LIME with 31%. Explanations were more understandable for
textual inputs, than for handwritten digit images. In fact, only
13% of the times the assessors did not choose any explanation
for a question on IMDB. For MNIST, only for 2 questions we
have a majority, i.e., more than half of the assessors selected
the same answer. Instead, for IMDB in 8 questions we have
answers selected by the majority of assessors. This indicates
that the explanations provided for IMDB find more consensus
among humans than the explanations provided for MNIST.

RQ2: Both high- and low-level techniques produce
human-understandable explanations of misbehaviours
of text classifiers. In particular, IG explanations were
selected 125 times out of 190 answers for IMDB.
On the other hand, the explanations for misbehaviours
of image classifiers poorly matched with the human
judgement. In fact, in more than one third of the
answers the assessors chose none of the proposed
explanations for MNIST. On the remaining two thirds,
high- and low-level explanations are chosen approxi-
mately the same number of times.

C. Discussion

The answers provided by the human assessors offer several
insights that we discuss qualitatively in the following.

• For MNIST, the two most understandable explanations are
IG and FM. Not only are these explanations at different
levels (i.e., low- and high-level, respectively), but they show
also some degree of complementarity. In fact, for Q1, Q8
and Q9, FM were selected more times than IG with a MH
difference higher than 4. On the other hand, for Q2, Q5
and Q7, IG was selected more times than FM. Remarkably,
for question Q2 (reported in Figure 5), IG was selected 18
times more than FM. In this case, the assessors did not find
the FM explanation useful, while IG highlights the pixels
that make the upper part of the five look like a nine, i.e.,
the leftmost pixels, making the upper part round, and the
rightmost pixels, close the circle.

• For IMDB, FM and IG explanations are the most chosen
by human assessors. In particular, for half of the ques-
tions, IG and FM were chosen by at least 10 assessors
and the difference in MH was lower than or equal to 4.
For instance, Figure 6 reports Q8, where the assessors
selected FM 11 times and IG 14 times. In this case, the
assessors acknowledged that the review actually contained
more negative than positive words as reported by the FM
explanation. At the same time, the assessors probably agreed
with the IG heatmap that the word “stupid” contained in the
text can negatively affect the prediction.

• For some questions, all the explanations were judged as
poorly understandable by humans, who did not choose
any of the provided explanations as possible causes of
the misbehaviour. For MNIST, Q9 can be considered the
most challenging question, since only 15 times out of 87
times an explanation was selected, while the majority of
the assessors selected none of the explanations. Similarly,
in the IMDB survey, Q2 is the question with the lowest
number of selected explanations, since the assessors chose
an explanation only 11 times out of 57, while the majority
chose none.

• As shown in Figure 7 (a), for MNIST, assessors selected
only FM 36 times and only LIME 45 times while they
selected both explanations 14 times. Similarly, they selected
only FM 36 times, only IG 58 times and both FM and
IG 24 times. This suggests that high-level and low-level
explanations for MNIST digit misclassifications are highly
complementary. Figure 7 (b) shows that for IMDB, most of
the times both high- and low-level explanations have been
selected together. However, the number of times assessors
selected one of the two and not the other remains quite high,
which indicates substantial complementarity.

In summary, in several instances either high- or low-level
explanations look understandable for humans and provide
hints on what are the properties of the inputs that make the
DNN misbehave. In most cases, either high- or low-level
explanations, but not both, were chosen as useful explanations,
indicating that such explanations are highly complementary.



(a) MNIST

(b) IMDB

Fig. 7: Comparison of the number of matches with human
between high-level and low-level techniques.

On the other hand, there is still a large fraction of cases in
which none of the two are deemed useful by humans, which
points to the need for better DNN explanations.

D. Threats to Validity

Construct Validity: FM depends on the features selected
to generate the map dimensions. For feature selection, we
relied on previous work [8], while for the combination of
features, we exhaustively considered all available dimensions
and all their combinations. Moreover, the selection of different
hyper-parameters for our study can affect the final results. To
reduce this risk, we developed our framework in order to be
configurable and we performed some preliminary runs with
different hyper-parameters to select the best configuration.
External Validity: The selection of subjects could be a threat
to external validity. Therefore, we considered two different
domains, i.e., image and text. To represent different types
of explanations, we considered one state-of-the-art, openly
available technique for each explanation type.
Conclusion Validity: The stochastic nature of some of the
considered low-level techniques, the dimensionality reduction
approach and the clustering algorithm might affect the final
outcome. To mitigate this threat, we ran these techniques
multiple times and reported average value across runs.
Reproducibility: To make our results reproducible, We make
our implementation and the experimental data openly accessi-
ble online: https://github.com/testingautomated-usi/unboxer.

VI. RELATED WORK

A. Comparison of Explainable AI techniques

During the last decade, a variety of techniques have been
proposed to provide explanations for DL [6], [7], [34]–[38].
Although these techniques share a common goal, they differ
in various aspects. Therefore, there is a growing need for
comparisons of such explanatory techniques.

Tjoa and Guan [39] proposed a survey on explanatory
techniques and categorised them based on their interpretability.
Their analysis is based solely on the mathematical properties
of each technique and on experimental results available from
the literature, while we explicitly ran the explanatory tech-
niques and compared them both quantitatively and qualita-
tively. Samek et al. [40] provided a survey on explanatory
techniques applicable to DNNs. Unlike our work, they did
not evaluate the similarity among explanations produced by
different techniques and they analysed human interpretability
of explanations without conducting any human assessment
involving humans. In fact, they measured the size of the
explanation file generated by each technique as a measure
of human interpretability. Ledel and Berthold [10] examined
the quality of explanations provided by LIME and SHAP
for a different task, i.e., bug prediction, through an empirical
study involving human assessors. Unlike them, we compared
different techniques also quantitatively.

To the best of our knowledge, existing empirical compar-
isons only considered low-level explanations, without evaluat-
ing high-level explanations.

B. Explainable AI for DL Testing

In the literature, both low- and high-level explanations have
been leveraged to interpret the output of DL testing. As for
low-level explanations, HUDD [41] identifies root causes of
DNN failures by using heatmap explanations generated by
the LRP technique and then clustering inputs with similar
heatmaps. Stocco el. al [42] proposed ThirdEye, a monitor
for autonomous driving systems which relies on heatmaps
produced by the SmoothGrad [37] technique to predict unsafe
conditions in advance. High-level explanations provided by
FM have been used for different testing tasks. DEEPHYPER-
ION [8], [43], [44] is a test generator that leverages FM for
extensively exploring the feature space and finding failure-
inducing inputs with different characteristics. Nguyen et al.
[45] used FM for test selection. FM has also been used to
assess test suite adequacy, measured as the number of cells
covered by the test inputs [46].

Existing works either considered low- or high-level ex-
planations. Instead, we consider both explanation levels and
compare them to assess their usefulness and understandability
in explaining DL misbehaviours.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we provide an in-depth comparison of ex-
planatory techniques for DL misbehaviours. Our empirical
results show that high- and low-level explanations are both
understandable for humans, but provide different and com-
plementary insights. Our human study suggests that current
explanations are not always satisfactory, as may not provide
human-interpretable causes of misbehaviours.

As future work, we will perform a larger evaluation, involv-
ing additional explanatory techniques, clustering solutions, DL
tasks, and experts from the industry.

https://github.com/testingautomated-usi/unboxer
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