
Model-Based Exploration of the Frontier of Behaviours for Deep
Learning System Testing

Vincenzo Riccio
Software Institute - USI
Lugano, Switzerland

vincenzo.riccio@usi.ch

Paolo Tonella
Software Institute - USI
Lugano, Switzerland
paolo.tonella@usi.ch

ABSTRACT

With the increasing adoption of Deep Learning (DL) for critical

tasks, such as autonomous driving, the evaluation of the quality of

systems that rely on DL has become crucial. Once trained, DL sys-

tems produce an output for any arbitrary numeric vector provided

as input, regardless of whether it is within or outside the validity

domain of the system under test. Hence, the quality of such systems

is determined by the intersection between their validity domain

and the regions where their outputs exhibit a misbehaviour.

In this paper, we introduce the notion of frontier of behaviours,

i.e., the inputs at which the DL system starts to misbehave. If the

frontier of misbehaviours is outside the validity domain of the

system, the quality check is passed. Otherwise, the inputs at the

intersection represent quality deficiencies of the system. We devel-

oped DeepJanus, a search-based tool that generates frontier inputs

for DL systems. The experimental results obtained for the lane

keeping component of a self-driving car show that the frontier of a

well trained system contains almost exclusively unrealistic roads

that violate the best practices of civil engineering, while the frontier

of a poorly trained one includes many valid inputs that point to

serious deficiencies of the system.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.

KEYWORDS

software testing, deep learning, model based testing, search based

software engineering

ACM Reference Format:

Vincenzo Riccio and Paolo Tonella. 2020. Model-Based Exploration of the

Frontier of Behaviours for Deep Learning System Testing. In Proceedings

of the 28th ACM Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering (ESEC/FSE ’20), Novem-

ber 8ś13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3368089.3409730

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409730

1 INTRODUCTION

Deep Neural Networks (DNNs) have been applied successfully to

complex tasks such as image processing, speech recognition and

natural language analysis. The range of applications of DNNs is

huge and includes autonomous driving, medical diagnosis, financial

trading and automated customer services. As a consequence, the

problem of testing Deep Learning (DL) systems to ensure their

dependability has become critical.

Existing approaches to generate tests for DL systems can be split

into two groups: (1) techniques that directly manipulate the raw

input data [43, 49, 52] and (2) techniques that derive input data from

a model of the input domain [1, 16]. In the former case the result

is a so called adversarial example, while in the latter case it can be

regarded as a critical test scenario. In both cases, test generation is

guided by the criticality of the produced inputs, measured either

directly as a misclassification/inconsistent behaviour [1, 16, 49] or

mediated by a proxy such as surprise [24] or neuron coverage [32,

43]. Adversarial examples, e.g. images obtained by manipulation

of the pixels of an image taken from the camera of an autonomous

car, may produce very unlikely (or even impossible) cases, whose

resolution might have no impact on the system’s reliability. Critical

test scenarios obtained by model-based input generation tend to

be more realistic. However, the existing model-based approaches

do not aim at covering thoroughly and characterising the region

where the DL system misbehaves.

The ISO/PAS standard 21448 [14] on safety of autonomous and

assisted driving prescribes that unsafe situations should be iden-

tified and be demonstrated to be sufficiently implausible. When

unsafe situations are plausible, countermeasures must be adopted.

Manual identification of unsafe conditions for DNNs is challenging,

because their behaviour cannot be decomposed via logical condi-

tions, as done e.g. with root cause analysis [23]. This motivates our

work on the automated identification of the frontier of behaviours

of DL systems: we aim to support engineers in identifying and

checking the plausibility of the frontier of behaviours.

In this paper, we introduce a novel way to assess the quality of

DL systems, based on a new notion: the frontier of behaviours. The

frontier of behaviours of a DL system is a set of pairs of inputs that

are similar to each other and that trigger different behaviours of

the DL system. It represents the border of the input region where

the DL system behaves as expected. For instance, the frontier of

a classifier of hand-written digits consists of the pairs of similar

digits that are classified differently (one correctly and the other

incorrectly). The frontier of behaviours of a low quality DL system

may include pairs of inputs that intersect the validity domain, being

similar to nominal cases for which the system is expected to behave

correctly according to the requirements. On the contrary, a DL

876

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409730
https://doi.org/10.1145/3368089.3409730

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Vincenzo Riccio and Paolo Tonella

system of high quality will start to misbehave on inputs that deviate

substantially from the nominal ones, with small or no intersection

with the validity domain (e.g. a digit ł5ž is misclassified only when

it becomes unrecognisable or indistinguishable from another digit,

such as ł6ž).

We have adopted a model-based input generation approach to

produce realistic inputs, under the assumption that a high fidelity

model of the input is available for the DL system under test. There

are several domains in which the development of input models is

standard practice, among which safety-critical domains such as

automotive and aerospace engineering [27]. In other domains, such

as image classification, input models can be constructed (e.g. in

Unity [48]) or reverse engineered.

Our tool DeepJanus implements a multi-objective evolutionary

algorithm to manipulate the input model, with the overall goal of

achieving thorough exploration of the frontier of behaviours. To

this aim, one of its two fitness functions promotes diversity, so as

to spread the solutions along the entire frontier, and minimises

the distance between the elements in each pair. The other fitness

function pushes the solutions to the frontier. The output of Deep-

Janus provides developers with a human-interpretable picture of

the system’s quality. In fact, the elements of each pair in the fron-

tier may be deemed as within or outside the validity domain of the

system (in the latter case, they are irrelevant for the reliability of

the DL system). When used to compare alternative DL systems that

solve the same problem, metrics of the frontier size (e.g. its radius)

are useful to show quantitatively if the region contained in one

frontier is substantially smaller/larger than the region contained in

the other.

DeepJanuswas evaluated on both a classification problem (hand-

written digit recognition) and a regression problem (steering angle

prediction in a self-driving car). The frontier of the digit classifier

was evaluated by 20 human assessors recruited on a crowdsourcing

platform. Results show that a high quality classifier has a smaller in-

tersection with the validity domain with respect to a poorly trained

one. The frontier of the self-driving car was evaluated by assessing

the conformance of the shapes of the roads at the frontier to the

guidelines for the design of American highways [39]. Frontier roads

obtained for a high quality system violate such guidelines, showing

that the systemmisbehaves only in extreme cases. Such results were

confirmed by quantitative measures of the frontier radius, which

was larger for the high quality than for the low quality DL system,

and qualitative assessment of the frontier images/roads, which are

more challenging for humans when taken from the high quality

system frontier. We compared our results with those produced by

DLFuzz [18], a tool that generates boundary adversarial inputs by

pixel manipulation, and found that it generates corner cases that

are more concentrated and less realistic than those of DeepJanus.

2 BACKGROUND

2.1 Deep Learning Systems

In this work, we refer to software systems that include one or more

DNNs as DL systems [32]. Their behaviour is defined both by the

code that implements them and by the data used to train their DNN

components. A DNN can be considered as a black-box component

that transforms a numeric input vector into a numeric output. It

can accomplish various tasks, such as the prediction of the steering

angle of a self-driving car starting from the image captured by a

camera sensor [7]. In a regression problem the output is a con-

tinuous value, whereas in a classification problem the output is a

discrete class. A DNN consists of a collection of computation units,

called neurons, organised into layers that are connected sequentially

(i.e. neurons of layer 𝑛 are only connected to neurons of layer 𝑛 + 1).

Each connection of the network has a weight, which determines

the propagation of a neuron’s output to the next neuron. Among

the layers of a DNN, the input layer receives external data, the

output layer produces the final result, while internal, hidden layers

perform intermediate processing (e.g. feature extraction). Each neu-

ron computes its output by applying an activation function (e.g.,

sigmoid) to the weighted sum of its inputs.

To accomplish a task, DNNs are iteratively trained through a

large set of labelled training data. During training, a DNN learns

how to predict a label for classification problems or a real value

for regression problems, by adjusting the weights of the network.

The number of training iterations in which the whole training set

is processed by the network is a hyper-parameter called epochs.

The number of epochs influences how the network fits the training

data and how it will be able to generalise to unseen inputs.Another

fundamental hyper-parameter is the learning rate, which defines

the amount of corrections that are applied to the weights at each

training iteration.

2.2 Evolutionary Search and Novelty Search

Evolutionary algorithms are a family of meta-heuristic optimisation

algorithms that evolve a population of individuals (i.e. candidate

solutions to an optimisation problem) by means of genetic oper-

ators such as mutation and crossover. A fitness function provides

an approximate, heuristic distance of each candidate solution from

the searched optimum. During evolution, the best individuals are

selected for the next population based on the fitness function values.

Multi and many objective evolutionary algorithms generalise

the basic evolutionary algorithms to multiple fitness functions.

Since, in such a case, there is no single dimension on which to

compare individuals during selection, the best ones are obtained

by Pareto front analysis as those that are not dominated by any

other individual. Multi and many objective genetic algorithms have

proved to be particularly effective in test case generation [34, 40].

The solutions found by search algorithms might be concentrated

in a small portion of the input space, especially when the search

landscape includes local optima with a large basin of attraction. If

the goal is not only to find good solutions according to the fitness

functions, but also to find solutions spread across the entire input

space (as in our case), evolutionary algorithms can be combined

with novelty search. Novelty search algorithms reward individuals

that exhibit diversity of behaviours, instead of promoting only those

that contribute to progress toward the optimum [29, 35]. They trade

off a lower pressure toward optimal fitness values with a higher

diversity in the population being evolved.

3 MOTIVATING EXAMPLE

In this Section, we provide a motivating example that shows how

the frontiers of behaviours can help characterising the quality of

877

Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 1: Four pairs of elements in the frontiers of the con-

sidered DL systems. The first column shows two original

samples from the MNIST data set. The second and third

columns show the pairs in the frontier of system LQ; fourth

and fifth columns show the frontier pairs of system HQ

DL systems. Let us consider the frontiers of behaviours of two DL

systems that perform the same task but exhibit different levels of

quality in terms of test accuracy (namely HQ: High Quality: LQ:

Low Quality). Both systems consist of a classifier of handwritten

digits that predicts which digit is represented by an input image. In

a classification problem such as this one, the frontier is represented

by pairs of similar inputs that are classified differently (one correctly,

the other incorrectly).

To assess the difference between the frontiers of these two sys-

tems, we consider two images of handwritten digits taken from

the MNIST [28] dataset that are labeled correctly (i.e. as number

ł5ž) by both systems. They are shown in the first column of Fig.

1. Then, we apply slight changes to the shape of the two inputs.

This is achieved by first extracting a vector model of the digits and

then manipulating the control points of such model. The result

consists of two pairs of samples in the frontier of each system, i.e.

LQ (second and third column) and HQ (fourth and fifth column).

We can notice that the inputs in the frontier of LQ are very similar

to the original samples. Moreover, all the misclassified inputs in its

frontier are still clearly recognisable as digit ł5ž. Instead, the frontier

of HQ contains inputs that are probably challenging to classify even

for humans. In particular, the first element of the fifth column has

the general shape of a five, but it could also be considered as a nine,

since the upper part of the figure forms a circle. The second element

of the fifth column does not look like any reasonably classifiable

digit, despite its similarity with the corresponding member of the

pair on the other side of the frontier.

To summarise, the frontier of a low quality DL system is expected

to contain samples that are quite close to those that the system

is supposed to classify correctly, indicating a poor generalisation

capability. Differently, the frontier of a high quality DL system

includes cases that are difficult or impossible to handle even for

humans, being outside the validity domain.

4 MODEL-BASED INPUT REPRESENTATION

We aim at generating inputs at the behavioural frontier of a DL sys-

tem and we want them to be realistic and representative. Therefore,

we adopt a model-based approach that produces test inputs starting

from a model representation of the input domain and enforces the

compliance with domain-specific constraints. This may require the

Figure 2: Bitmap and vector image; model representation of

the image returned by Potrace

transformation of a concrete input into an abstract model that can

be manipulated by the exploration algorithm, in case no domain

specific model of the input is available. The transformation from

models to concrete inputs is instead always required.

To illustrate how our approach works in practice, we consider

both an exemplary classification problem and a regression problem.

The classification problem consists of handwritten digit recognition,

while the regression problem is steering angle prediction for self-

driving cars. In the latter case, we focus on systems that perform

behavioural cloning, i.e. the DL component learns the lane keeping

behaviour from a human driver [7]. In detail, the DL system is

able to autonomously keep the lane since it contains a DNN that

is trained with images captured by the camera sensors of the car,

paired with the steering angles provided by a driver.

4.1 Image Classification

We use the inputs available from the MNIST database [28] and

originally encoded as 28 x 28 images [28], with greyscale levels

that range from 0 to 255. We adopt Scalable Vector Graphics (SVG)1

as their model representation. SVG is an XML-based vector image

format for two-dimensional graphics that can represent shapes

as the combination of cubic and quadratic Bézier curves [20]. By

modelling handwritten digits as a combination of Bézier curves, we

ensure that the smoothness and curvature of handwritten shapes

is preserved and that images remain realistic even after (minor)

manipulation of the Bézier curve parameters.

To transform an original input image into its SVG model rep-

resentation, we use the Potrace algorithm [45]. This algorithm

performs a sequence of operations, including binarisation, despeck-

ling and smoothing, to produce a smooth vector image starting

from a bitmap. Figure 2 shows an MNIST image paired with its SVG

model and its description. The control parameters that determine

the shape of the modelled digit are: the start point, the end point

and the control points c1 and c2 that define each Bézier segment.

In the other direction, we use rasterisation to transform a vector

model into a 28 x 28 grayscale image. This operation exploits the

functionality offered by LibRsvg2 and Cairo3, two popular open

source graphic libraries.

4.2 Steering Angle Prediction

We consider a self-driving car that is trained and tested in the

BeamNG [5] simulation environment. It features an accurate driving

physics engine and it is freely available and research-oriented.

1https://www.w3.org/Graphics/SVG/
2https://wiki.gnome.org/Projects/LibRsvg
3https://www.cairographics.org

878

https://www.w3.org/Graphics/SVG/
https://wiki.gnome.org/Projects/LibRsvg
https://www.cairographics.org

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Vincenzo Riccio and Paolo Tonella

Figure 3: The model of a road and the corresponding road

Figure 4: A test case rendered by the BeamNG simulation

engine is composed by the road, the driving task, the envi-

ronment and the car

The input to the steering angle predictor is an image captured by

the onboard sensor camera in the simulated environment. Therefore,

the test input is determined by the scenario in which the car drives.

Such simulated scenario can be modelled as the composition of the

roads, the driving task (i.e., start point, end point and lane to keep),

and the environment, which includes the weather and lightness

conditions.

For the sake of simplicity, let us consider scenarios consisting of

single plain asphalt roads surrounded by green grass on which the

car has to drive keeping the right lane. The environment is always

set to a clear day without fog. The roads are composed of two lanes

with fixed width in which there is a yellow center line plus two

white lines that separate each lane from the non-drivable area.

Abstractedly, a road can be represented as a sequence of contigu-

ous points in a bi-dimensional space (assuming constant elevation).

To produce a smooth and realistic shape for the road beingmodelled,

we use Catmull-Rom cubic splines [8] and then we interpolate such

curves to obtain the 2D point sequence. Figure 3 shows the splines

that define a road as well as its interpolated 2D points (marked as

grey dots). The control parameters that determine the shape of the

splines in Figure 3 are the coordinates of the control points of the

center line spline (marked as larger red dots).

The concrete representation of the driving scenario is strictly

dependent on the simulator. BeamNG exposes an intuitive API

for programmatically configuring virtual roads and controlling the

simulations4. In BeamNG, a scenario is described by a JSON file that

contains the set of points to render the roads. The simulation engine

renders the road by creating polygons starting from the points

provided in the scenario description and sets up the environment,

as shown in Figure 4.

To transform the abstract model into the road to be rendered in

the simulator, we calculate its points by exploiting the recursive

algorithm for the evaluation of Catmull-Rom cubic splines proposed

by Barry and Goldman [4] and the functionality offered by the

Shapely library for manipulation and analysis of planar geometric

objects5. We also enforce the following domain specific constraints:

(1) the start point and the end point of a driving task should be

different, (2) the road should fall within a square bounding box of

fixed size, and (3) a road should not self-intersect.

5 THE DEEPJANUS TECHNIQUE

DeepJanus explores the behavioural space of a DL system to find

pairs of inputs at its frontier: one input on which the DL system

behaves as expected, and another similar input on which it misbe-

haves. By generating a pair of similar inputs that trigger different

behaviours, we ensure that the failure-inducing inputs are close to

the validity domain and are likely to represent valid corner cases

on which the system misbehaves. Otherwise, by generating single

inputs that trigger misbehaviours, without staying close to corre-

sponding ones for which the system behaves well, it would have

been more likely to produce uninteresting test cases that are far

from the frontier and do not intersect the validity domain.

DeepJanus aims at exploring the frontier at large, i.e., as thor-

oughly as possible, so as to report a broad picture of the boundary

behaviours to developers. To perform such exploration, it aims at

producing inputs at the frontier of behaviours and at maximising

the diversity among the elements that are moved toward the fron-

tier, so as to achieve thorough frontier exploration. At the same

time, it also maintains high similarity within each pair of inputs

crossing the frontier. Therefore, the problem solved by DeepJanus

can be cast as a multi-objective search problem [19]. To obtain a

diverse set of solutions, we hybridise traditional multi-objective

search-based algorithms [12] with novelty search [36]. The idea is

to measure the diversity between the population being evolved and

the archive of the best individuals.

Algorithm 1 outlines the top level steps implemented in Deep-

Janus. Our algorithm is based on NSGA-II [12], a multi-objective

evolutionary search algorithm quite popular in search-based soft-

ware testing research [26, 34, 40, 50, 51], extended with: (1) hybridi-

sation with novelty search, achieved by defining a fitness function

that includes a measure of sparseness of the solutions (see Section

5.1.1); (2) use of an archive, to avoid cycling and to promote fron-

tier exploration at large (lines 5 and 15 of Algorithm 1); (3) use of

re-population, to escape from stagnation (line 13 of Algorithm 1).

Moreover, we defined domain specific mutation operators to evolve

the candidate solutions.

We implemented DeepJanus in Python on top of the DEAP

evolutionary computation framework (v. 1.3.0) [15]. The code of

DeepJanus is available online as open source [47].

4https://github.com/BeamNG/BeamNGpy
5https://github.com/Toblerity/Shapely

879

https://github.com/BeamNG/BeamNGpy
https://github.com/Toblerity/Shapely

Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Algorithm 1: Overall algorithm of DeepJanus

Input :𝑆 : set of input seeds

𝑔𝑚𝑎𝑥 : max number of generations

𝑝𝑜𝑝𝑠𝑖𝑧𝑒 : population size

Output :𝐴: archive of best individuals at the frontier

1 generation g← 0;

2 A← ∅;

3 population P ← InitialisePopulation(𝑆 , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒);

4 Evaluate(P);

5 A← UpdateArchive(P);

/* assign crowding distance to individuals */

6 P ← Select(𝑃 , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒);

7 while 𝑔 < 𝑔𝑚𝑎𝑥 do

8 𝑔← 𝑔 + 1;

/* Tournament selection based on dominance and

crowding distance */

9 offspring Q← SelTourDCD(𝑃 , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒) ;

10 foreach 𝑞 ∈ Q do

11 𝑞←Mutate(𝑞) ;

12 end

// substitute the most dominated individuals

13 P ← Repopulation(𝑃 , 𝑆 , 𝐴);

14 Evaluate(𝑃 ∪𝑄);

15 A← UpdateArchive(𝑃 ∪𝑄);

16 P ← Select(𝑃 ∪𝑄 , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒);

17 end

18 return (A)

5.1 Fitness Functions

The algorithm optimises two fitness functions, which measure re-

spectively the quality of an individual (consisting of its cross-pair

diversity and within pair similarity) and the closeness of the inputs

to the frontier of behaviours.

5.1.1 Quality of an Individual. The quality of an individual is mea-

sured by two factors, namely (1) the distance between the two

members of a pair and (2) the sparseness of an individual with

respect to the individuals in the archive measure the quality of a

given individual. Since both are distances between inputs, we can

combine these two measures additively into the fitness function 𝑓1,

to be maximised:

max 𝑓1 (𝑥) = spars(𝑥,𝐴) − 𝑘 dist(𝑥 .𝑚1, 𝑥 .𝑚2) (1)

where 𝐴 is the archive and 𝑥 .𝑚1, 𝑥 .𝑚2 are the members of the pair

in the individual 𝑥 . Both functions spars and dist report a measure

of distance between inputs. Hence, the constant 𝑘 is a pure number

that can be safely set to 1. It can also be experimentally tuned (by

decreasing it to values less than 1), to give more importance to the

sparseness component of 𝑓1, especially when preliminary runs of

the algorithm show that the final archive contains a small number

of individuals.

Function dist measures the similarity of the inputs within an

individual as the distance between its members. This distance is

computed on the input instances and is domain-specific. For the

image classification problem, we compute the Euclidean distance

between pixel matrices [18, 43]. For the regression problem, we

use a weighted Levenshtein distance [31] that takes into account

the edit operations on the sequences of angles and points sampled

on the spines of the roads being compared. This distance metric

is suitable for the comparison of road shapes, since it takes into

account the order of the points along the curves as well as the

relative angle between consecutive points. Function spars measures

the sparseness of an individual, i.e., its minimum distance from the

solutions in the archive 𝐴. spars(𝑥) is defined as the distance from

the closest individual in the archive 𝐴: min𝑦∈𝐴 dist(𝑥,𝑦). dist (𝑥,𝑦)

is computed from the distances between individual members, as

the minimum between (dist(𝑥 .𝑚1, 𝑦.𝑚1) + dist(𝑥 .𝑚2, 𝑦.𝑚2))/2 and

(dist(𝑥 .𝑚1, 𝑦.𝑚2) + dist(𝑥 .𝑚2, 𝑦.𝑚1))/2. We introduced the sparse-

ness in the quality measure to promote diversity within the solution.

This was motivated by preliminary experiments we ran in which

the search tended to get stuck in local optima, covering only a tiny

portion of the frontier, if sparseness was not included in the fitness

function.

5.1.2 Closeness to the Frontier. The fitness function 𝑓2 measures

the closeness of an individual to the frontier:

min 𝑓2 (𝑥) =

{

eval(𝑥 .𝑚1) · eval(𝑥 .𝑚2), if > 0

−1, otherwise
(2)

Computation of 𝑓2 requires the execution of the DL system un-

der test on the two members belonging to the individual. This is

represented by the invocation of function eval on each member.

The quality of the behaviour exhibited by the DL system under test

is measured during its execution. We design 𝑓2 so that such quality

is a positive number if the system exhibits the expected behaviour;

a negative number otherwise.

The definition of function eval is domain/problem specific. For

the image classification problem, we exploit the confidence level

provided by the output layer of the DNN as eval function. In fact,

the output of a classification DNN is usually the array returned by

the softmax activation function containing the confidence levels

assigned to each of the possible classes [17]. More specifically,

eval is calculated as the difference between the confidence level

associated with the expected label and the maximum confidence

level associated to any other class.

For the steering angle prediction problem, we use ametric similar

to that proposed by Gambi et al. [16]. The behaviour of the DNN is

characterised by the distance of the car from the center of the lane

during the simulation of the corresponding input scenario. More

specifically, eval is calculated as min(𝑤/2−𝑑), where𝑤 is the width

of the lane and 𝑑 the distance of the car from the lane centre. The

position of the car is approximated by its centre of mass. Function

eval returns its maximum value (𝑤/2) when the car has distance

zero from the center of the lane; it returns a negative number when

an out of bound episode occurs.

5.2 Initial Population

Function InitialisePopulation (line 3 in Algorithm 1) returns

the initial population given a set of seeds and the population size.

Seeds are inputs on which the DL system under test exhibits a

correct behaviour. The two members of an individual are obtained

880

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Vincenzo Riccio and Paolo Tonella

by copying the same seed twice and applying the mutation operator

to one of the two copies.

More specifically, for image classification, seeds are chosen from

the MNIST samples that are correctly classified by the system under

test. For steering angle prediction, we generate valid roads and

evaluate the system on them. The ones on which the car does not

depart from the lane are considered as seeds (positive eval).

5.3 Archive of Solutions

The best (non dominated) individuals encountered during the search

are kept in the archive [11]. This prevents the search for novelty

from cycling, a phenomenon where the population moves from one

area of the behavioural space to another and back again, without

any memory of the areas it has already explored [37]. At the end of

the exploration, the archive contains the final solution.

The archive is managed by the UpdateArchive function (lines 5

and 15 of Algorithm 1). An individual of the population is considered

as a candidate to be included in the archive if it is at the frontier

of behaviours. When a new input pair at the frontier is found,

it is compared with its nearest neighbour in the archive. If the

distance from the nearest neighbour in the archive is higher than a

threshold 𝑡𝑎 , the new individual is kept in the archive. Instead, if the

distance from its nearest neighbour is lower than the threshold, the

new candidate competes locally with its nearest neighbour in the

archive. The local competition rewards individuals outperforming

the most similar ones in the behavioural space [30]. In our case,

local competition is based on the distance between the members of

each pair: only the individual that has the closest members is kept

in the archive.

The threshold 𝑡𝑎 is a parameter that determines the granularity

of the final frontier, so it can be adjusted by the tester so as to obtain

a frontier with the desired size: a high value of 𝑡𝑎 makes it difficult

for new individuals at the frontier to enter the archive, because they

must be extremely different from those already included. Lowering

the value of 𝑡𝑎 increases the granularity of the frontier and a higher

number of similar individuals are added. To choose empirically the

value of 𝑡𝑎 , we recommend to (1) compute the minimum distance

among a randomly selected set of diverse inputs; (2) choose a value

greater than this number; (3) iteratively adjust this value based on

the final archive size.

5.4 Selection Operator

We use the Select operator from NSGA-II (lines 6, 9 and 16 in

Algorithm 1) [12]. This selection operator favours individuals with

smaller non-domination rank and, when the rank is the same, i.e.,

the individuals belong to the same Pareto front, it favours the one

with higher crowding distance (less dense regions) to promote diver-

sity. Since we use tournament selection, the offspring of the current

population is obtained by choosing the winner among the (two)

individuals being compared in each tournament (SelTourDCD at

line 9 in Algorithm 1).

5.5 Mutation

The individuals selected for the offspring are mutated by theMu-

tate operator (lines 10:12 in Algorithm 1). This operator manipu-

lates the control parameters of the model representation of each

input: it chooses one of the two members of the individual and it

applies a perturbation to the model parameters representing the

input. The extent of the perturbation is uniformly sampled in a

customisable range.

After applying the operator, we verify if the mutant complies

with the constraints of the input domain. Moreover, we also verify

that, once concretised into an actual input for the DL system, the

mutant is different from its parent and from the other member of the

pair. If any of these checks fails, the operator is applied repeatedly,

until a valid input is obtained.

For the classification problem, the mutation operator randomly

chooses a start point, an end point or a control point of the SVG

model and applies a displacement to it in the two-dimensional space.

The mutation operator for the regression problem is similar and it

is applied to the control points that define the road shape.

5.6 Repopulation Operator

The exploration could get stuck in local optima, despite the mecha-

nisms used to promote diversity (e.g., sparseness, in fitness function𝑓1).

To mitigate this undesirable situation and further vary the popu-

lation, DeepJanus uses the Repopulation operator (line 13 in

Algorithm 1) inspired by the Shotgun hill climbing meta-heuristic

algorithm [19]. It replaces the individuals in the population that are

evolved from a seed that is already present in the archive. When

repopulation is applied, each new individual is generated starting

from one of the seeds that have not yet produced any solution in the

archive. If all the starting seeds have produced at least one solution,

repopulation does not take place.

6 EXPERIMENTAL EVALUATION

6.1 Subject Systems

We evaluate DeepJanus on two DL systems, addressing different

tasks and domains. The first system performs a classification task,

which consists of recognising handwritten digits from the MNIST

dataset [28]. The second system solves a regression problem. Specif-

ically, it predicts the steering angle of a self-driving car given the

image of its onboard camera [7], using the BeamNG simulator [5].

Hereafter, we refer to such objects of study simply as MNIST and

BeamNG. We chose these problems because of their representa-

tiveness, and because they have been widely used in the literature

to evaluate testing techniques for DNN systems [16, 18, 24, 43].

Moreover, self-driving cars are an example of safety-critical usage

of DNNs. To assess the usefulness of the frontier when computed

for a high quality (HQ) vs a low quality (LQ) DL system, we trained

two versions of each of the two considered systems.

The MNIST case study consists of a DNN model that predicts

which digit is represented by an input image. We considered the

deep convolutional network provided by Keras,6 because of its

popularity, simplicity and effectiveness. DeepJanus crosses the

frontier of MNIST when the input image is misclassified. The HQ

version of MNIST has 99.11% test accuracy and was obtained by

training the DNN on the 60 000 images of the MNIST training set

with the default settings provided by Keras, i.e., 12 epochs, with

batches of size 128, and with a learning rate equal to 1. The LQ

6https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

881

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

version was trained on the same training set and with the same

hyper-parameters, with the exception of the learning rate that

was set to 0.001. In fact, such a learning rate is associated with an

accuracy drop, i.e., the model’s test accuracy goes down to 84.34% .

The BeamNG case study is a self-driving car equipped with

a Lane Keeping Assist System (LKAS) running in the BeamNG

simulator [5]. It adopts a behavioural reflex approach, i.e., the DL

component learns a direct mapping from the sensor camera input

to the steering angle value to be passed to the actuators [9]. The

DNN driving the BeamNG ego-car utilises the Dave-2 architecture

designed by Bojarski et al. at NVIDIA, consisting of three CNNs, fol-

lowed by five fully-connected layers [7]. The DNNwas trained with

images captured by the camera sensors of the ego-car, paired with

the steering angles provided by the simulator’s autopilot, which

takes advantage of global knowledge and computes the optimal

steering angle geometrically. DeepJanus crosses the frontier of

BeamNG if the ego-car goes out of bound when driving in the input

road. For BeamNG we also produced two versions, HQ and LQ.

Both versions were trained for 4, 600 epochs, with batches of size

128 and with a learning rate equal to 0.001. To train the LQ version,

we used a training dataset obtained by letting the autopilot drive

up to 15 mph on a sinusoidal road (𝑦 = 𝑠𝑖𝑛(𝑥/10) × 10, where 1 unit

corresponds to 1 meter). The HQ version was instead trained on an

enriched training set, including 30 diverse types of roads made of 20

control points that were automatically generated. Unrepresentative

training data is a common fault in DL systems [22].

6.2 Research Questions

RQ1 (Effectiveness): What is the intersection between the frontier

reported by DeepJanus and the input validity domain of the DL

system under test?

This is the main research question of our empirical evaluation,

since it focuses on the use of DeepJanus to check if the frontier

behaviours of the DL system under test are outside the validity

domain, which indicates the system has reached an adequate quality

level, or within the validity domain, which points to issues that

might affect the DL system in real executions.

Metrics: Assessing whether a frontier input is or is not part

of the valid inputs is in general a domain dependent task, which

requires human judgment and deep knowledge of the requirements

behind the DL system.

For MNIST, we resort to a human study in order to understand

if and to what extent a given digit is recognisable correctly by a

human. When this is not the case, the input image is deemed as

outside the validity domain of the classifier.

For BeamNG, we refer to the guidelines from the American Asso-

ciation of StateHighway and TransportationOfficials (AASHTO) [39],

which prescribes among other things the minimum recommended

radius of curvature by speed limit (in particular, 47 ft at 15 mph, the

car speed in the simulations run on BeamNG). When the generated

inputs violate the road design guidelines on the minimum curvature

radius we deem the frontier input as outside the validity domain.

Human Assessment: To determine whether the frontier of

MNIST intersects its validity domain, we asked humans to recog-

nise the digit images taken from the frontier and to declare their

confidence in such recognition.

We created 20 surveysmade of 10 questions to be presented to hu-

man assessors: 9 assessment questions (ASQ) and 1 attention check

question (ACQ). The difference between ASQ and ACQ is that the

former involves a frontier image while the latter is by construction

a nominal image whose classification is trivial and unambiguous for

humans. To this aim, we used the digits delivered with the Freestyle

Script font,7 a computer font that resembles handwritten characters.

We double checked manually that the ASQs were indeed unambigu-

ous to classify. To obtain the images featured in the ASQs, we ran

DeepJanus on both versions of MNIST (HQ and LQ), once for each

digit class. Then, we considered the member of the pair outside

the frontier (i.e., the misclassified image). We took 90 images for

each of the two MNIST frontiers. We sorted the elements in the

frontier based on their distance from the corresponding nominal

Freestyle-font digit (the same image used in the ACQ) and divided

them into 9 buckets of the same size. We selected the same number

of samples (9) for each digit by randomly selecting one sample

from each bucket. In total, we selected 180 inputs from the obtained

frontiers. Each of the selected inputs appeared in a single survey.

The order of appearance of HQ ASQs, LQ ASQs and the ACQ was

randomised in the surveys. In total, this assessment involved 20

different human assessors, one for each survey.

For each image, we asked humans to answer the following ques-

tions: (1) łWhat digit does the image represent?ž (0, 1, 2, . . ., 9); (2)

łHow confident are you in your answer?ž (-2: not at all, -1: not much,

0: borderline, 1: quite confident, 2: very confident).

RQ2 (Discrimination): Does DeepJanus provide discriminative

information about the DL systems under test?

In this research question, we compare the frontiers of two DL

systems, one exhibiting good performance (HQ) and one having

poor performance (LQ). We measured the size of the region identi-

fied by each frontier, to assess whether HQ systems have a larger

frontier than LQ ones.

Metrics: To answer this research question quantitatively, we

defined the metric radius: let us consider the archive𝐴 at the end of

the execution of Algorithm 1 and let us assume that each individual

𝑥 ∈ 𝐴 stores the input on which the DL system misbehaves in its

secondmember 𝑥 .𝑚2. We define the outer frontier of misbehaviours

as 𝑆𝑜𝑢𝑡 = {𝑥 .𝑚2 |𝑥 ∈ 𝐴} and the inner one as 𝑆𝑖𝑛 = {𝑥 .𝑚1 |𝑥 ∈ 𝐴}.

The radius measures the average distance of inputs in the frontier

from the reference input Ω, an elementary, nominal input that the

system is expected to handle correctly by the requirements:

radius(𝑆) =

∑

𝑚∈𝑆 dist(𝑚,Ω)

|𝑆 |
(3)

For MNIST, we considered as reference image Ω the correspond-

ing digit in Freestyle Script font, converted to the same format as

the MNIST dataset. For BeamNG, the reference sample is a straight

road with no curves.

We also evaluated HQ’s vs LQ’s frontiers qualitatively, by in-

volving humans in a survey, in which they performed pairwise

comparisons between images taken from the two frontiers (i.e., one

image from HQ’s and one from LQ’s frontier).

Human Assessment: For the qualitative assessment of HQ’s

vs LQ’s frontiers, we provided human evaluators with two images

7https://www.fonts.com/font/itc/freestyle-script

882

https://www.fonts.com/font/itc/freestyle-script

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Vincenzo Riccio and Paolo Tonella

taken respectively from each of the two frontiers. For MNIST, we

asked them to decide which of the two digit images is easier to

recognise. For BeamNG, we asked them to decide which of the

two roads is easier to drive. Each pair of inputs was assessed by

two human evaluators. Then, we measured the number of answers

in which both subjects agreed in considering as easier to recog-

nise/drive the element on the frontier of HQ (resp. LQ). This would

support our conjecture that manual inspection of the frontier is an

effective way to discriminate between good and poor performance

DL systems. For each system, we published 10 surveys made of 10

questions: 9 discriminative questions (DSQ) and 1 attention check

question (ACQ), consisting of a pair of inputs for which the human

choice is obvious and completely predictable. Each survey, made of

10 questions, was answered by 2 evaluators. In total, this assessment

involved 40 different evaluators, i.e., 20 for each system.

RQ3 (Comparison): Is DeepJanus able to characterise the fron-

tier of the behaviours better than the state of the art tool DLFuzz?

DLFuzz [18] is a state of the art tool for the generation of bound-

ary values by means of fuzzing. Among the techniques proposed

in the literature, DLFuzz is the most related to DeepJanus since

it produces boundary inputs by manipulation of existing seeds.

DLFuzz uses gradient ascent optimisation to maximise a custom

loss function that takes also into account the distance between the

new input and the seed. It should be noticed that DLFuzz is not

a model-based input generator as it operates directly on the raw

input (i.e., image pixels). Hence, its boundary inputs are supposedly

less realistic and less representative than DeepJanus’.

Metrics: We compare the radius, as defined above, of Deep-

Janus’ frontier w.r.t. DLFuzz’s boundary inputs.

6.3 Experimental Procedure

Our experimental procedure consists of: (1) generation of the fron-

tiers for the DL systems under test (MNIST HQ/LQ; BeamNG

HQ/LQ) and computation of the radius for the generated frontiers;

(2) generation of boundary inputs using DLFuzz and comparison

with DeepJanus’s frontiers; (3) human assessment of the inputs in

the frontiers, by means of two surveys: a digit recognition survey

(for RQ1) and a pairwise image comparison survey (for RQ2).

Generation of the Frontier with DeepJanus: We ran Deep-

Janus 10 times on each version of each system under test. At the

end of the runs, we collected the values of the radius metric, as

well as the representation of the input pairs that belong to the

frontiers. The configurations of DeepJanus were obtained in a few

preliminary runs and are reported in Table 1.

Before each run, we obtained a different set of initial seeds by

sampling the inputs under the constraint that they have to produce

a correct behaviour of the systems under test. For MNIST, each set

of seeds was obtained by randomly selecting 100 correctly classified

inputs from the MNIST test set, all belonging to the same class (digit

ł5ž). Similar results have been obtained for digits other than five, but

we do not report them for space reasons. For BeamNG, each initial

set consisted of 12 valid seed roads on which the considered model

was able to keep the lane. A seed road was defined by 10 control

points in which the initial point was always at a fixed position

whereas the others were placed at a random position 25 meters

away from the previous one.

Table 1: DeepJanus Configurations

Parameter MNIST BeamNG

population size 100 12

generations 4000 100

mutation lower bound 0.01 1

mutation upper bound 0.6 6

archive threshold 𝑡𝑎 4 35

parameter 𝑘 of fitness function 𝑓1 0.1 0.01

Generation of Boundary InputswithDLFuzz:We generated

boundary inputs for MNIST using DLFuzz [18] starting from the

same seeds used by DeepJanus. However, we could not consider

BeamNG in the comparison, because DLFuzz is not able to test a

system in the simulation loop, on a sequence of images. It can only

evaluate the output of the DNN component on a single, statically

collected image, which is fuzzed by the tool. This means that it

is not possible to simulate out of bound episodes, which would

require a sequence of images to be fuzzed dynamically. We adopted

the DLFuzz configuration that is reported as the one achieving the

best performance [18].

Human Assessment of the Frontier: We outsourced our sur-

veys to a crowdsourcing platform in order to have a diverse pool

of respondents [6]. Crowdsourcing has recently become quite pop-

ular in software engineering [33] to automate tasks that can only

be performed by humans. A problem is specified in the form of

small Human Intelligence Tasks (HITs) and made available in a

crowdsourcing platform, where registered workers can choose to

complete HITs for a small remuneration [41]. We selected the Ama-

zon Mechanical Turk platform8 for our two surveys (resp. for RQ1

and RQ2), because it is well known, well documented and widely

used to gather qualitative feedbacks [21, 25].

We applied two methods to ensure the quality of the answers: (1)

added an attention check question (ACQ) to each survey (see above);

and (2) restricted the participation to workers with high reputation

(above 95% approval rate) [42]. We only accepted answers from

users that passed the ACQ.

7 RESULTS

7.1 RQ1 (Effectiveness)

Table 2 reports the intersection between the input validity domain

and the outer frontier of behaviours for each version of the con-

sidered systems. The upper part of the table reports the results for

the MNIST system. As shown in the first two rows, out of the 90

images generated by DeepJanus on MNIST HQ, 69 are recognised

by the crowdworkers as the digit classes to which the correspond-

ing seeds belong, whereas 21 are recognised incorrectly. On the

other hand, on MNIST LQ DeepJanus generated 82 frontier inputs

that are recognised correctly by crowdworkers. This indicates that

the frontier of MNIST LQ has a larger intersection with the set

of valid inputs than MNIST HQ. The classification performed by

the crowdworkers was subjected to the Fisher’s exact test [13] to

determine the statistical significance of the effect of the version

8https://www.mturk.com

883

https://www.mturk.com

Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 2: RQ1: Invalid inputs found at the frontier. The met-

rics in the last column are different between the considered

systems since the validity domains of MNIST and BeamNG

are assessed through system specific metrics, i.e. human as-

sessment + confidence and curvature radius, respectively

Object Validity Number Confidence

MNIST HQ
Valid 69 0.463 ± 1.255

Invalid 21 -0.095 ± 1.338

MNIST LQ
Valid 82 1.524 ± 0.835

Invalid 8 -0.875 ± 1.356

𝑝-value 1.394E-2 2.48E-4

odds ratio 0.322 -

effect size - 0.81 (large)

Object Validity Number Curv. radius (ft)

BeamNG HQ
Valid 1 47.371

Invalid 141 37.359 ± 4.262

BeamNG LQ
Valid 56 49.283 ± 1.966

Invalid 173 40.419 ± 4.488

𝑝-value 3.787E-12 2.52E-12

odds ratio 0.022 -

effect size - 1.009 (large)

(HQ vs LQ) on the validity of the frontier inputs. The 𝑝-value lower

than the usual threshold 𝛼 = 0.05 indicates statistical significance of

the difference between MNIST HQ and MNIST LQ. The odds ratio

indicates that the expected relative proportion of valid vs invalid is

much lower in the MNIST HQ system.

The last column contains the confidence (mean ± standard devi-

ation) expressed by the crowdworkers when classifying the images.

The scale is between -2:+2 (with -2 = min confidence and +2 max

confidence). Human assessors had a significantly higher confidence

in classifying the valid inputs belonging to the frontier of MNIST

LQ and were more uncertain when recognising valid inputs belong-

ing to the frontier of MNIST HQ. This confirms that the frontier

of a high quality DL system contains elements that are difficult to

classify confidently even for a human. We assessed the statistical

significance of the confidence comparison by applying Generalised

Linear Modelling (GLM) [38]. The dependent variable of the GLM

model is confidence, whereas the independent variable is a numeric

encoding of the system (HQ = 0; LQ = 1). The results of the statistical

test are a small 𝑝-value (way below 𝛼 = 0.05) and a large Cohen-d

effect size (i.e., a large difference between the means, normalised

by the pooled standard deviation; conventionally, the threshold for

a large Cohen-d effect size is set to 0.8).

The lower part of the table shows the results for the BeamNG sys-

tem. As reported in the third column, the self-driving car equipped

with the HQ lane keeping assist system goes out of bound (misbe-

haves) only on one valid road from the frontier (indeed the mini-

mum radius of curvature of this road is greater that the AASHTO

threshold by just 0.371 feet). Instead, there is a significant number

of valid frontier roads when the car is equipped with the LQ system.

The fourth column reports the minimum radius of curvature (mean

Table 3: RQ2 (top, middle): discriminating HQ from LQ by

DeepJanus (DJ)’s inner/outer radius and by DLFuzz (DLF);

RQ3 (bottom): comparing DeepJanus vs DLFuzz

Inner Radius Outer Radius

DJ

MNIST

HQ 10.575 ± 0.188 10.597 ± 0.188

LQ 10.284 ± 0.083 10.328 ± 0.078

𝑝-value 2.96E-4 5.61E-4

effect size 1.99 (large) 1.87 (large)

BeamNG

HQ 55.968 ± 1.522 57.236 ± 1.753

LQ 52.853 ± 2.22 55.565 ± 2.412

𝑝-value 1.8E-2 9.34E-2

effect size 1.636 (large) 0.792 (medium)

DLF MNIST

HQ - 9.889 ± 0.275

LQ - 9.976 ± 0.115

𝑝-value - 0.385

effect size - -0.398 (small)

DJ vs DLF (HQ)
𝑝-value - 4.14E-6

effect size - 2.905 (large)

DJ vs DLF (LQ)
𝑝-value - 4.25E-7

effect size - 3.441 (large)

± standard deviation). Its values for the roads on the HQ frontier

are significantly lower than the radius values on the LQ frontier.

This confirms that roads in the HQ frontier are substantially more

difficult or even impossible to drive than those in the LQ frontier.

Also for the results of BeamNG, we applied the Fisher’s exact test

and GLM to assess the statistical significance of the results. 𝑃-values

indicate statistical significance of the difference between HQ and

LQ, with a low odds ratio (valid/invalid proportion in HQ vs LQ) and

a large Cohen-d effect size (large normalised difference between

minimum curvature radii).

Summary: Many elements at the frontier of behaviours

identified by DeepJanus intersect the input validity domain

when the quality of the system under test is low. For a high

quality system, the valid inputs at the frontier are challeng-

ing to handle even for humans (MNIST case study) or are

very close to being invalid (BeamNG case study).

7.2 RQ2 (Discrimination)

The top rows of Table 3 show the inner/outer frontier radii re-

turned by DeepJanus for the systems under test (mean ± standard

deviation).

For each system under test, we compare the values of the frontier

radii obtained for HQ vs LQ, to understand if the frontier volume

can help discriminate between different quality levels. We assessed

the statistical significance of this comparison by applying GLM,

with radius as dependent variable and the quality of the system

(HQ = 0; LQ = 1) as independent variable.

For MNIST, the radius for the LQ version of the system is signifi-

cantly smaller than the one of the HQ version (with low 𝑝-value and

884

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Vincenzo Riccio and Paolo Tonella

Table 4: RQ2: human discrimination of LQ from HQ

based on frontier inputs (MNIST: easier to recognise digit;

BeamNG: easier to drive road)

Object LQ HQ disagree 𝑝-value 𝑝-success

𝑀𝑁𝐼𝑆𝑇 77 4 19 < 2.2E-16 0.95

𝐵𝑒𝑎𝑚𝑁𝐺 79 9 12 4.152E-15 0.89

large Cohen-d effect size). This means that, on average, the higher

quality system tolerates larger changes to input images before ex-

hibiting a misbehaviour. Similarly, for BeamNG the radius for the

LQ version of the system is significantly smaller than the one of the

HQ version (with low 𝑝-value and large/medium Cohen-d effect

size resp. for inner/outer radius), showing again that the frontier

can discriminate the HQ version from the LQ one.

Table 4 shows the results obtained from the crowdsourced survey

on the discrimination of easier to recognise digits and easier to drive

roads. In the LQ column, it reports the number of answers in which

both crowdworkers comparing the same pair of images agreed in

considering as qualitatively easier to classify/drive the input on the

frontier produced by the LQ system. The HQ column reports the

number of answers in which both subjects agreed in considering as

qualitatively easier to classify/drive the input on the HQ frontier.

The next column reports the number of cases in which the two

subjects did not agree with each other.

Crowdworkers were able to determine the relative quality of the

systems by looking at the inputs on their frontiers with very high

accuracy. In fact, the large majority (95% for MNIST and 89% for

BeamNG) of inputs found byDeepJanus on the outer frontier of the

LQ system are perceived as qualitatively easier to classify/drive than

those of the HQ systems. Statistical significance of the classification

performed by the users was assessed by applying the Binomial

exact test [10]. The returned 𝑝-values for MNIST and BeamNG are

very low, showing that the choice between LQ frontier input and

HQ frontier input as the easier to classify/drive is very unlikely to

be random and uniform (i.e., 50%, 50%).

Summary: The frontier of behaviours allows developers to

discriminate a system with higher from one with lower qual-

ity: the radius is significantly larger for the former. A larger

frontier means that the system is able to generalise correctly

the learned behaviour to a larger set of valid input data. This

is confirmed by the human study, where inputs from the

larger frontier were deemed to be more difficult to handle

than those from the smaller frontier.

7.3 RQ3 (Comparison)

In order to address 𝑅𝑄3, we compare the frontier identified by our

approach with the boundary inputs returned by DLFuzz [18]. The

middle part of Table 3 shows the radius of the outer boundary inputs

returned by DLFuzz for the MNIST classifier (inner boundaries are

not returned by DLFuzz). We can notice that, differently from the

frontier produced byDeepJanus, the boundary inputs of DLFuzz do

not exhibit any statistically significant difference between HQ and

Figure 5: Seed and frontier images generated respectively by

DeepJanus and DLFuzz (the starting seed is the same)

Figure 6: A pair of inputs at the frontier of the BeamNG sys-

tem (top). The left input triggers a misbehaviour, i.e. the car

goes out of bounds, as depicted in the bottom picture

LQ’s frontier radius (high 𝑝-value, > 0.05). Actually, the difference

between the radii seems to go in the opposite direction than in the

case of DeepJanus (negative, small effect size). This indicates that

DLFuzz cannot reliably discriminate HQ from LQ by generating a

larger frontier for the former than for the latter.

As reported in the lower part of Table 3, for both LQ and HQ

the radius of the frontiers identified by DLFuzz is always signifi-

cantly smaller than the radius of DeepJanus. This indicates that

DeepJanus can explore the frontier more thoroughly than DLFuzz.

Indeed, DLFuzz applies small perturbations to the pixels of the

input image that cause the classifier to fail, but it does not attempt

to explore the input space thoroughly by promoting diversity when

new inputs are generated (the only way to promote diversity in

DLFuzz is by selecting different initial seeds at each run, which we

did in our experiments). On the contrary, DeepJanus is guided by

a fitness function (𝑓1) that accounts explicitly for the sparseness of

the generated inputs, hence exploring the behavioural space more

thoroughly. As a consequence, the inputs generated by DLFuzz are

closer to the reference than the ones produced by DeepJanus.

885

Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

From a qualitative point of view, the boundary inputs found

by DLFuzz are quite different from those found by DeepJanus, as

apparent from Figure 5. In fact, the same seed is manipulated as a

shape of calligraphic traits modelled in SVG by DeepJanus (two

rightmost pictures in Figure 5), while raw pixel manipulation is

performed by DLFuzz (leftmost pictures). The images generated by

DeepJanus simulate quite realistically the traits that can be found

in a hand-written digit, while DLFuzz’s images look like blurred,

noisy versions of the original ones.

As regards the steering angle prediction task, we cannot perform

a direct comparisonwith existing techniques. In fact, existingmodel-

based techniques [1ś3, 16] can find system failures but do not aim

at finding frontier inputs (as shown at the top of Figure 6). Instead,

techniques that perform raw data manipulation [18, 43, 46, 52] just

manipulate individual camera images and test the steering angle

predictor in isolation. Thus, they cannot assess whether an incorrect

prediction causes an out of bound episode, as the one shown at the

bottom of Figure 6.

Summary: DeepJanus explores a significantly larger fron-

tier than DLFuzz. The images produced by DeepJanus for

MNIST look more realistic than those of DLFuzz.

7.4 Threats to Validity

Construct Validity: The choice of the reference input, Ω, for the

computation of the radius in a given domain is conventional. We

have tried different choices of Ω in both domains (MNIST and

BeamNG) and found that the experimental results reported in Sec-

tion 7 are not sensitive to the specific choice of Ω: the same con-

clusions were drawn when a different choice of Ω was made. The

choice of the distance metrics is also crucial. We did not fine tune

the metrics for the case study domains, but we adopted metrics that

have been used in previous studies from the literature, i.e. we used

Euclidean distance when comparing matrices of grayscale values

(MNIST) and Levenshtein distance when comparing sequences of

road points (BeamNG). Finally, the eval function called within our

fitness function 𝑓2 is also domain specific. Also in this case, we

chose sound metrics that have been already adopted in the liter-

ature, i.e. confidence of digit classification and distance from the

center of the road.

External Validity: The choice of subject DL systems is a possi-

ble threat to the external validity. To mitigate this threat, we chose

two diverse DL systems. One is a DNN that solves a classification

problem, while the other is a self-driving car equipped with a DNN

component that solves a regression problem. However, our results

might not generalise to other DL systems and further studies with

a wider set of systems should be carried out to fully assess the

generalisability of our findings.

To ensure Reproducibility of our results, the source code of

DeepJanus, our objects, and the experimental data are available

online [47], making the evaluation repeatable.

8 RELATED WORK

Raw Input Data Manipulation: Several works generate test in-

puts for DL systems by applying perturbations to the available

training/test data. These approaches aim at generating inputs that

trigger inconsistencies between multiple DL systems [43], or be-

tween the original and a transformed test input [18, 46, 52]. They

require white-box access to the activation levels of the DNN, if they

are guided by coverage criteria such as neuron coverage [43] or the

more fine grained 𝑘-multisection neuron coverage [32].

One of the limitations of these approaches is the lack of real-

ism of the generated inputs [44]. While these corrupted images

are useful for security testing as adversarial attacks, they are not

representative of data captured by sensors of a real DL system.

To generate realistic inputs we adopted a model-based approach,

which ensures that data are generated only within the constraints

of the model. Another limitation of the existing input generators

is that they do not attempt to delimit the region of misbehaviour

but they just provide a way to sample it, regardless of the distance

from the region of nominal behaviour. On the contrary, we sample

the entire frontier of misbehaviours as thoroughly as possible.

Kim et al. [24] designed a test adequacy criterion, named surprise

adequacy, to capture the novelty of the input with respect to the

training data. However, it has been used for test case selection and

retraining but not for test input generation. Moreover, a surprise ad-

equate test set is not necessarily one that covers also our frontier of

misbehaviours, so we view the two approaches as complementary.

Model-Based Input Generation: Abdessalem et al. [1ś3] com-

bine genetic algorithms and machine learning to test advanced

driver-assistance systems in an industrial setting. Gambi et al. [16]

propose AsFault, a search-based approach to test the lane-keeping

system of self-driving cars. The goal of these techniques is to gen-

erate extreme and challenging scenarios, maximising the number

of detected system failures. DeepJanus is also model-based, but it

differs from existing approaches because it aims at reaching the

frontier without surpassing it and because it spreads the generated

inputs along the frontier. Its output is not just a set of critical inputs,

but also a characterisation of the frontier of behaviours.

9 CONCLUSIONS AND FUTUREWORK

DeepJanus characterises the quality of a DL system as its frontier

of behaviours, i.e., pairs of similar inputs that trigger different be-

haviours of the system and are far from each other. Experimental

results show that frontier inputs provide the developers with both

quantitative and qualitative information, useful to assess the quality

of a DL system and to identify valid inputs that it cannot handle

properly. Our empirical study shows that DeepJanus is more ef-

fective in characterising the frontier of behaviours than the state

of the art tool, DLFuzz. In our future work, we plan to extend the

validity of our results by considering a wider sample of DL systems

with increasingly complex input domain, including industrial ones.

ACKNOWLEDGEMENTS

This work was partially supported by the H2020 project PRECRIME,

funded under the ERC Advanced Grant 2017 Program (ERC Grant

Agreement n. 787703). The driving simulator has been provided by

BeamNGGmbH, and fundamental support has been offered by their

employee M. Mueller. The authors would like to thank N. Brochado,

L. Frunzio, and S. Giacomelli for their contributions to the project.

886

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Vincenzo Riccio and Paolo Tonella

REFERENCES
[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2016.

Testing advanced driver assistance systems using multi-objective search and
neural networks. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE. 63ś74.

[2] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018.
Testing Vision-based Control Systems Using Learnable Evolutionary Algo-
rithms. In Proceedings of the 40th International Conference on Software Engi-
neering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 1016ś1026.
https://doi.org/10.1145/3180155.3180160

[3] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and
Thomas Stifter. 2018. Testing Autonomous Cars for Feature Interaction Failures
Using Many-objective Search. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (Montpellier, France) (ASE 2018).
ACM, New York, NY, USA, 143ś154. https://doi.org/10.1145/3238147.3238192

[4] Phillip J. Barry and Ronald N. Goldman. 1988. A Recursive Evaluation Algorithm
for a Class of Catmull-Rom Splines. SIGGRAPH Comput. Graph. 22, 4 (June 1988),
199ś204. https://doi.org/10.1145/378456.378511

[5] BeamNG GmbH. [n.d.]. BeamNG.research. https://www.beamng.gmbh/research
[6] Tara S. Behrend, David J. Sharek, Adam W. Meade, and Eric N. Wiebe. 2011. The

viability of crowdsourcing for survey research. Behavior Research Methods 43, 3
(25 Mar 2011), 800. https://doi.org/10.3758/s13428-011-0081-0

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning
for Self-Driving Cars. CoRR abs/1604.07316 (2016). arXiv:1604.07316 http:
//arxiv.org/abs/1604.07316

[8] Edwin Catmull and Raphael Rom. 1974. A Class of Local Interpolating Splines.
In Computer Aided Geometric Design, R. E. Barnhill and R. F. Riesenfeld (Eds.).
Academic Press, 317 ś 326. https://doi.org/10.1016/B978-0-12-079050-0.50020-5

[9] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceedings
of the IEEE International Conference on Computer Vision. 2722ś2730.

[10] C. J. Clopper and E. S. Pearson. 1934. The Use of Confidence or Fiducial Limits
Illustrated in the Case of the Binomial. Biometrika 26, 4 (12 1934), 404ś413.
https://doi.org/10.1093/biomet/26.4.404

[11] Edwin D. de Jong. 2004. The Incremental Pareto-Coevolution Archive. In Genetic
and Evolutionary Computation ś GECCO 2004, Kalyanmoy Deb (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 525ś536.

[12] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (April 2002), 182ś197. https://doi.org/10.1109/4235.996017

[13] Ronald Aylmer Fisher. 1992. Statistical methods for research workers. In Break-
throughs in statistics. Springer, 66ś70.

[14] International Organization for Standardization (ISO). 2019. ISO/PAS 21448: Road
vehicles ś Safety of the intended functionality.

[15] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner,
Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made
Easy. J. Mach. Learn. Res. 13, 1 (July 2012), 2171ś2175. http://dl.acm.org/citation.
cfm?id=2503308.2503311

[16] Alessio Gambi, Marc Müller, and Gordon Fraser. 2019. Automatically testing self-
driving cars with search-based procedural content generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA. Association for Computing Machinery, New York, NY, USA, 318ś328.
https://doi.org/10.1145/3293882.3330566

[17] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press, Cambridge, MA, USA. http://www.deeplearningbook.org.

[18] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:
differential fuzzing testing of deep learning systems. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE. Association for
Computing Machinery, New York, NY, USA, 739ś743. https://doi.org/10.1145/
3236024.3264835

[19] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
Software Engineering: Trends, Techniques and Applications. ACM Comput. Surv.
45, 1, Article 11 (Dec. 2012), 61 pages. https://doi.org/10.1145/2379776.2379787

[20] M. Hazewinkel. 1997. Encyclopaedia of Mathematics: Supplement Volume 1.
Number v. 1 in Encyclopaedia of Mathematics. Springer Netherlands. https:
//doi.org/10.1007/978-94-015-1288-6

[21] Jeffrey Heer and Michael Bostock. 2010. Crowdsourcing Graphical Perception:
Using Mechanical Turk to Assess Visualization Design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia,
USA) (CHI ’10). ACM, New York, NY, USA, 203ś212. https://doi.org/10.1145/
1753326.1753357

[22] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In Proceedings of 42nd International Conference on Software Engineering

(ICSE ’20). ACM, 12 pages.
[23] ISO. 2011. Road vehicles ś Functional safety.
[24] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system

testing using surprise adequacy. In Proceedings of the 41st International Conference
on Software Engineering, ICSE. 1039ś1049.

[25] Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008. Crowdsourcing User Studies
with Mechanical Turk. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Florence, Italy) (CHI ’08). ACM, New York, NY, USA,
453ś456. https://doi.org/10.1145/1357054.1357127

[26] Kiran Lakhotia, Mark Harman, and Phil McMinn. 2007. A Multi-objective Ap-
proach to Search-based Test Data Generation. In Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation (London, England) (GECCO
’07). ACM, New York, NY, USA, 1098ś1105. https://doi.org/10.1145/1276958.
1277175

[27] Craig Larman. 1997. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall.

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278ś
2324.

[29] Joel Lehman and Kenneth O. Stanley. 2011. Abandoning Objectives: Evolution
Through the Search for Novelty Alone. Evolutionary Computation 19, 2 (2011),
189ś223. https://doi.org/10.1162/EVCO_a_00025

[30] Joel Lehman and Kenneth O. Stanley. 2011. Evolving a Diversity of Virtual
Creatures Through Novelty Search and Local Competition. In Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation (Dublin,
Ireland) (GECCO ’11). ACM, New York, NY, USA, 211ś218. https://doi.org/10.
1145/2001576.2001606

[31] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707ś710.

[32] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
Multi-granularity Testing Criteria for Deep Learning Systems. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 120ś131. https:
//doi.org/10.1145/3238147.3238202

[33] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. 2017. A survey of the use of
crowdsourcing in software engineering. Journal of Systems and Software 126
(2017), 57ś84. https://doi.org/10.1016/j.jss.2016.09.015

[34] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016).
ACM, New York, NY, USA, 94ś105. https://doi.org/10.1145/2931037.2931054

[35] B. Marculescu, R. Feldt, and R. Torkar. 2016. Using Exploration Focused Tech-
niques to Augment Search-Based Software Testing: An Experimental Evaluation.
In 2016 IEEE International Conference on Software Testing, Verification and Valida-
tion (ICST). 69ś79. https://doi.org/10.1109/ICST.2016.26

[36] Jean-Baptiste Mouret. 2011. Novelty-Based Multiobjectivization. In New Horizons
in Evolutionary Robotics, Stéphane Doncieux, Nicolas Bredèche, and Jean-Baptiste
Mouret (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 139ś154.

[37] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv:1504.04909 [cs.AI]

[38] J. A. Nelder and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal
of the Royal Statistical Society: Series A (General) 135, 3 (1972), 370ś384. https:
//doi.org/10.2307/2344614

[39] American Association of State Highway and Transportation Officials. 2018.
AASHTO Green Book (GDHS-7) - A Policy on Geometric Design of Highways and
Streets. American Association of State Highway and Transportation Officials.

[40] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2 (2018), 122ś158.

[41] F. Pastore, L. Mariani, and G. Fraser. 2013. CrowdOracles: Can the Crowd Solve the
Oracle Problem?. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation. 342ś351. https://doi.org/10.1109/ICST.2013.13

[42] Eyal Peer, Joachim Vosgerau, and Alessandro Acquisti. 2014. Reputation as a
sufficient condition for data quality on Amazon Mechanical Turk. Behavior
Research Methods 46, 4 (01 Dec 2014), 1023ś1031. https://doi.org/10.3758/s13428-
013-0434-y

[43] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. 1ś18.

[44] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael
Weiss, and Paolo Tonella. 2020. Testing Machine Learning based Systems: A
Systematic Mapping. Empirical Software Engineering (2020). https://doi.org/10.
1007/s10664-020-09881-0

[45] P. Selinger. 2003. Potrace: a polygon-based tracing algorithm. (2003). http:
//potrace.sourceforge.net/potrace.pdf

887

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1145/378456.378511
https://www.beamng.gmbh/research
https://doi.org/10.3758/s13428-011-0081-0
https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1109/4235.996017
http://dl.acm.org/citation.cfm?id=2503308.2503311
http://dl.acm.org/citation.cfm?id=2503308.2503311
https://doi.org/10.1145/3293882.3330566
http://www.deeplearningbook.org
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1007/978-94-015-1288-6
https://doi.org/10.1007/978-94-015-1288-6
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/1276958.1277175
https://doi.org/10.1145/1276958.1277175
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1145/2001576.2001606
https://doi.org/10.1145/2001576.2001606
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1016/j.jss.2016.09.015
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/ICST.2016.26
https://arxiv.org/abs/1504.04909
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
https://doi.org/10.1109/ICST.2013.13
https://doi.org/10.3758/s13428-013-0434-y
https://doi.org/10.3758/s13428-013-0434-y
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1007/s10664-020-09881-0
http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/potrace.pdf

Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[46] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings of the
40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE
’18). ACM, New York, NY, USA, 303ś314. https://doi.org/10.1145/3180155.3180220

[47] DeepJanus 2019. DeepJanus: A Tool for Model-based Exploration of the Fron-
tier of Behaviours for Deep Learning Systems Testing. https://github.com/
testingautomated-usi/DeepJanus.

[48] Unity Technologies. 2019. Unity. https://unity.com
[49] MatthewWicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-Guided

Black-Box Safety Testing of Deep Neural Networks. In Tools and Algorithms for
the Construction and Analysis of Systems - 24th International Conference, TACAS.
408ś426.

[50] Shin Yoo and Mark Harman. 2007. Pareto Efficient Multi-objective Test Case
Selection. In Proceedings of the 2007 International Symposium on Software Testing
and Analysis (London, United Kingdom) (ISSTA ’07). ACM, New York, NY, USA,
140ś150. https://doi.org/10.1145/1273463.1273483

[51] Shin Yoo and Mark Harman. 2010. Using hybrid algorithm for Pareto efficient
multi-objective test suite minimisation. Journal of Systems and Software 83, 4
(2010), 689 ś 701. https://doi.org/10.1016/j.jss.2009.11.706

[52] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE. 132ś142.

888

https://doi.org/10.1145/3180155.3180220
https://github.com/testingautomated-usi/DeepJanus
https://github.com/testingautomated-usi/DeepJanus
https://unity.com
https://doi.org/10.1145/1273463.1273483
https://doi.org/10.1016/j.jss.2009.11.706

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Learning Systems
	2.2 Evolutionary Search and Novelty Search

	3 Motivating Example
	4 Model-based Input Representation
	4.1 Image Classification
	4.2 Steering Angle Prediction

	5 The DeepJanus Technique
	5.1 Fitness Functions
	5.2 Initial Population
	5.3 Archive of Solutions
	5.4 Selection Operator
	5.5 Mutation
	5.6 Repopulation Operator

	6 Experimental Evaluation
	6.1 Subject Systems
	6.2 Research Questions
	6.3 Experimental Procedure

	7 Results
	7.1 RQ1 (Effectiveness)
	7.2 RQ2 (Discrimination)
	7.3 RQ3 (Comparison)
	7.4 Threats to Validity

	8 Related Work
	9 Conclusions and Future Work
	References

