
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Combining Automated GUI Exploration of Android apps with Capture and
Replay through Machine Learning

Domenico Amalfitano, Vincenzo Riccio, Nicola Amatucci, Vincenzo De Simone,
Anna Rita Fasolino⁎

Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, Naples 80125, Italy

A R T I C L E I N F O

Keywords:
Android
Automated GUI Exploration
Dynamic analysis
Automated input generation
Machine Learning
Capture and Replay

A B S T R A C T

Context: Automated GUI Exploration Techniques have been widely adopted in the context of mobile apps for
supporting critical engineering tasks such as reverse engineering, testing, and network traffic signature gen-
eration. Although several techniques have been proposed in the literature, most of them fail to guarantee the
exploration of relevant parts of the applications when GUIs require to be exercised with particular and complex
input event sequences. We refer to these GUIs as Gate GUIs and to the sequences required to effectively exercise
them as Unlocking GUI Input Event Sequences.
Objective: In this paper, we aim at proposing a GUI exploration approach that exploits the human involvement in
the automated process to solve the limitations introduced by Gate GUIs, without requiring the preliminary
configuration of the technique or the user involvement for the entire duration of the exploration process.
Method: We propose juGULAR, a Hybrid GUI Exploration Technique combining Automated GUI Exploration
with Capture and Replay. Our approach is able to automatically detect Gate GUIs during the app exploration by
exploiting a Machine Learning approach and to unlock them by leveraging input event sequences provided by
the user. We implement juGULAR in a modular software architecture that targets the Android mobile platform.
We evaluate the performance of juGULAR by an experiment involving 14 real Android apps.
Results: The experiment shows that the hybridization introduced by juGULAR allows to improve the exploration
capabilities in terms of Covered Activities, Covered Lines of Code, and generated Network Traffic Bytes at a
reasonable manual intervention cost. The experimental results also prove that juGULAR is able to outperform the
state-of-the-practice tool Monkey.
Conclusion: We conclude that the combination of Automated GUI Exploration approaches with Capture and
Replay techniques is promising to achieve a thorough app exploration. Machine Learning approaches aid to
pragmatically integrate these two techniques.

1. Introduction

Over the last decade the number of users of mobile technology and
smartphones has considerably increased. The total number of smart-
phone users worldwide will surpass 2.5 billion in 2019.1 This is causing
a constant demand for new software applications running on mobile
devices, commonly referred as apps. At the same time, effective
methods, techniques, and tools are being requested to support the de-
velopers in the software lifecycle activities [1].

Automation tools can facilitate mobile app lifecycle activities since

they save humans from routine, time consuming and error prone
manual tasks. In the last years, automated approaches for exploring the
behavior of existing apps showed to be extremely useful in several
contexts. To list just a few, automated exploration of mobile apps has
been exploited in the field of software testing [2], reverse engineering
[3], network traffic generation and analysis [4,5], security [6,7], ac-
cessibility testing [8], performance and energy consumption analysis
[9]. Even some major cloud services providers like Amazon2 and
Google3 are currently offering testing services to Android mobile apps
developers, which exploit automated exploration techniques.

https://doi.org/10.1016/j.infsof.2018.08.007
Received 23 November 2017; Received in revised form 10 August 2018; Accepted 13 August 2018

⁎ Corresponding author.
E-mail address: annarita.fasolino@unina.it (A.R. Fasolino).

1 https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.
2 https://aws.amazon.com/it/device-farm/.
3 https://console.firebase.google.com/.

Information and Software Technology 105 (2019) 95–116

Available online 14 August 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.08.007
https://doi.org/10.1016/j.infsof.2018.08.007
mailto:annarita.fasolino@unina.it
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://aws.amazon.com/it/device-farm/
https://console.firebase.google.com/
https://doi.org/10.1016/j.infsof.2018.08.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.08.007&domain=pdf

Existing techniques for automated analysis of mobile apps behavior
implement exploration strategies very similar to the ones used by robots
for exploring unknown spaces [10] or by software agents in network
traversing and analysis [11]. They usually exploit an iterative approach
that is based on sending input events to a running app through its GUI
until a termination criterion is satisfied [12]. We refer to these tech-
niques as Automated GUI Exploration Techniques (AGETs). AGETs use
information that an app exposes at runtime through its GUI to derive
the set of input events to be fired; events may be chosen either ran-
domly [13] or according to a more systematic exploration strategy of
the GUI [14].

Although these techniques provide a viable approach for auto-
matically exercising mobile apps, they suffer from the intrinsic limita-
tion of not being able to replicate human-like interaction behaviors. In
fact, some app features need to be exercised by exploiting app-specific
knowledge that only human users can provide. As a consequence, these
techniques often fail in exploring relevant parts of the application that
can be reached only by firing complex sequences of input events on
specific GUIs and by choosing specific input values [15,16].

In this paper, we name Gate GUIs the GUIs that need to be solicited
by specific user input event sequences to allow the exploration of parts
of the app that cannot be reached otherwise. Moreover, we refer to the
action of providing the specific input event sequence needed to over-
come a Gate GUI as to the activity of unlocking the Gate GUI.

There may be several types of Gate GUIs in real apps, such as Login
Gate GUIs that a user needs to overcome to access reserved function-
ality offered by the app, Settings Gate GUIs that require a user to cor-
rectly configure the settings of services he intends to use through the
app, or QR code Gate GUIs that request a user to scan a valid QR code
through the device camera in order to access further features of the app.
The challenges posed by Gate GUIs to the app automated exploration
processes are well-known not only in the traditional field of software
testing, but also in that of app network traffic signature generation [4]
where dynamic analysis is used by large network vendors (e.g., Palo
Alto Networks, Dell, HP, Sophos, MobileIron) to trigger app network
activities.

Although most of the automated GUI exploration techniques pro-
posed in the literature does not explicitly address the issues tied to Gate
GUIs, some techniques offer solutions for unlocking Gate GUIs. Part of
these solutions leverages on predefined input event generation rules
embedded in the technique [6,17,18]. These approaches may not be
able to exercise Gate GUIs that need app-specific knowledge. Other
solutions require programming skills to understand the app-specific GUI
structure and/or configure the AGET to properly manage each distinct
Gate GUI [5,14,19–21]. These approaches are indeed labor intensive
and may not extend to different applications. Finally, there are solu-
tions that exploit manual user intervention. They suffer from the
drawback of requiring an extensive human involvement throughout the
entire exploration [13,22]. In fact, a user has to recognize the Gate GUI
and intervene in the process to properly exercise it.

To address the limitations of existing automated GUI exploration
techniques, in this paper we propose a novel hybrid approach, named
juGULAR (Gate gui UnLocking for AndRoid). Unlike other approaches, it
does not require programming skills, mobile framework knowledge,
and app comprehension for unlocking Gate GUIs. juGULAR auto-
matically detects the occurrence of a Gate GUI and exploits human
intervention to unlock it at runtime. However, the human intervention
to unlock a specific Gate GUI is limited only to the first time that GUI is
encountered. In fact, the human interaction to unlock a Gate GUI is
captured by juGULAR and replayed when the same GUI is detected
again during the exploration. The result is an hybrid exploration tech-
nique that combines automated GUI exploration with Capture and
Replay [23].

A key aspect of this approach is the ability to automatically detect
the occurrence of a Gate GUI. This can be considered as a GUI classi-
fication problem that we decided to solve with Machine Learning (ML).

We adopted ML techniques to train classifiers to recognize given classes
of Gate GUIs and exploited these classifiers to automatically detect Gate
GUIs during the exploration.

We implemented the juGULAR hybrid exploration approach tar-
geting Android apps. The approach was validated by an experiment
involving 14 real Android apps. The experiment showed that combining
Capture and Replay with automated exploration improves the effec-
tiveness of the exploration. juGULAR covered more source code and
Activities and generated more network traffic than the purely auto-
mated exploration, thanks to the automatic detection of two classes of
Gate GUIs, i.e., Login and Network Settings. The additional time for the
manual intervention required by juGULAR was reasonable, being on
average lower than 3% of the entire exploration time for all the con-
sidered apps. Moreover, the experiment showed that juGULAR out-
performed the state-of-the-practice in terms of exploration effective-
ness.

The paper improves the literature on automated GUI exploration
with the following contributions:

• a novel Hybrid GUI Exploration Technique that combines Capture
and Replay with automated exploration, named juGULAR;

• a Machine Learning approach for the automatic detection of Gate
GUIs;

• an experiment involving real Android apps showing the validity of
the proposed hybrid technique.

The remainder of the paper is organized as follows. Section 2 reports
related work, whereas Section 3 presents a motivating example.
Section 4 illustrates the Machine Learning-based approach we exploit
for obtaining the Gate GUI classifiers that we use to automatically de-
tect Gate GUIs. Section 5 describes the juGULAR approach and how we
implemented it in a software platform. Section 6 presents the experi-
ment we performed and the results we obtained. Finally, Section 7 re-
ports conclusions and future work.

2. Related work

2.1. Automated GUI Exploration Techniques for Android apps

A widely used automated GUI exploration tool for Android apps is
Monkey,4 that is part of the Android SDK. This tool adopts a quite
simple exploration approach by sending pseudo-random events to the
app under test. It is mainly used for a quick and repeatable robustness
testing of Android apps, revealing crashes, unhandled exceptions and
Application Not Responding (ANR) errors. This tool is regarded as the
current state-of-practice for automated Android app testing [18,24],
being the most widely used tool of this category in industrial settings
[15,25].

In recent years several smarter automated GUI exploration techni-
ques for Android apps have been proposed in the literature, especially
in the context of online testing [26]. Each technique adopts its own
strategy to define input event sequences to explore the app behavior.

Amalfitano et al. [12] analyzed a set of 13 testing techniques im-
plementing AGETs and abstracted, in a general framework, the char-
acteristics of the different GUI exploration approaches.

Choudhary et al. [2] presented a comparative study of the main
existing tool-supported test input generation techniques for Android,
including 7 tools exploiting an AGET. They concluded that Monkey
outperforms the considered tools; however, they highlight that each
tool shows perks that can be leveraged and combined in order to
achieve significant overall improvements.

Zeng et al. [15] investigated the limitations of the Monkey tool in an
industrial setting in which the apps can be far more complex than the

4 developer.android.com/studio/test/monkey.html.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

96

https://developer.android.com/studio/test/monkey.html

open-source ones considered by Choudhary et al. [2]. One of the so-
lutions they suggested to enhance the capabilities of Monkey consists in
manually constructing and performing sequences of events based on the
user knowledge when the app requires the user to login, provide valid
address information or scan a valid QR code.

In the following we describe the related work reporting their con-
tribution and providing details about how and to what extent they dealt
with exploration limitations related to the ones discussed in this paper.
These contributions have been organized in three main groups on the
basis of how they generate input event sequences that may be useful to
interact with Gate GUIs.

2.2. AGETs that rely on predefined input event generation rules

A first group of AGETs leverages on predefined input event gen-
eration rules embedded in the technique such as textual input genera-
tion rules or rules to exercise specific GUI object types.

Karami et al. [6] proposed a software inspection framework for the
identification of malicious apps. Like our approach, they exploit an
AGET to send random sequences of GUI events to the app. It is able to
generate significant input data for text fields, by applying rules pre-
defined in the tool based on the detected text field type. The text length
can also be tuned by the user before the exploration. However, their
automated input data generation strategy fails to unlock Gate GUIs that
need app-specific knowledge. Instead, we leverage input event se-
quences provided by the user to unlock Gate GUIs.

A3E [27] implements a model-based automated GUI exploration
strategy for Android apps. Like our approach, it automatically detects
Activities related to special responsibilities, such as login, using a rule-
based classification approach. Instead, we adopt a Machine Learning
approach since it does not require a strong expert involvement to define
rules for each specific Gate GUI class. Their approach exercises these
Activities with input events predefined in the tool. The authors have
also raised the need for complex interactions to reproduce certain apps
functionality. They have not addressed this limitation but planned to do
it through Record and Replay as future work. Our approach successfully
combines automated GUI exploration with Capture and Replay to ex-
ercise GUIs that require particular and complex input event sequences.

CrashScope [17] is a tool that explores Android apps using sys-
tematic input generation and exploiting several strategies with the aim
of triggering crashes. It detects the type of text expected by an app field
and automatically generates text input data to exercise it by applying
rules predefined in the tool. Unlike our approach, these rules do not aim
at exercising Gate GUIs to unlock them. Instead, CrashScope fills textual
fields with expected and unexpected data inputs to trigger crashes due
to input data not correctly handled in the code.

Sapienz [18] is a multi-objective search-based automated Android
app exploratory testing approach; it is based on a preliminary ex-
ploration performed by an AGET. Like our approach, Sapienz adopts
strategies to explore parts of the apps that can be reached only by ex-
ercising specific GUIs with particular and complex input event se-
quences. Its dynamic exploration technique exploits information re-
trieved by a static analysis of the app resources to fill the textual fields.
Its authors addressed the need for complex interactions by using pre-
defined patterns, referred to as motif genes, that capture testers’ ex-
perience and allow to reach higher coverage when combined with
atomic events. Our approach exploits neither static analysis nor pre-
defined patterns to unlock Gate GUIs. Instead, we capture the human
knowledge necessary to unlock a Gate GUI by recording input event
sequences provided by the user at runtime.

The approaches belonging to this group may suffer from limitations
in exercising Gate GUIs that need app-specific knowledge or contextual
information that is available only at runtime and thus results hardly
predictable before the app exploration.

2.3. Configurable AGETs that exploit input event sequences predefined by
the user

The solutions belonging to this group also rely on input event se-
quences defined before the app exploration. But they allow the user
himself to define ad-hoc rules in order to enhance the exploration by
app-specific knowledge.

Amalfitano et al. [14], propose a configurable tool that implements
both random and systematic GUI exploration strategies and has been
exploited also for model-based testing [28]. Their work points out that
the ability of the tool to cover the app source code and to discover faults
depends on several factors including the timing between consecutive
input events and input values provided to the GUI input fields. To this
aim, the user can provide an ad-hoc and app-specific configuration of
the tool before the exploration. Unlike AndroidRipper, our approach
does not require human effort to preliminarily configure the explora-
tion technique. Instead, we detect Gate GUIs during the app exploration
by exploiting a Machine Learning approach, without any previous app-
specific knowledge. Moreover, we unlock the Gate GUIs by using the
input event sequences provided by the user during the exploration.

Choi et al. [19] designed an automated technique, named Swift-
Hand, that uses active learning to reconstruct a model of the app during
testing. The AGET implemented by SwiftHand uses the learned app
model in order to select at each iteration the next input event to be
executed; it is chosen among the input events enabled at the current
state. This technique can detect EditText GUI objects and fill them
with significant input strings defined by the user before the exploration
with the aim to improve the exploration. Also our approach aims at
improving the app exploration. However, we do not need to predefine
app-specific input and we are not limited to textual inputs. Instead, we
exploit the input events provided by the user during the exploration.
Moreover, we do not aim at detecting any EditText GUI objects, but
we automatically detect GUIs that require to be exercised with parti-
cular input event sequences by exploiting a Machine Learning ap-
proach.

PUMA [20] is a programmable framework that can be exploited to
dynamically analyze several app properties, such as correctness, per-
formance and security. It provides a generic AGET that can be ex-
tensively configured to guide the app exploration. It can generate a
textual input when it is needed according to a policy coded by the user.
Moreover, the user can also specify app-specific events to be applied
when the exploration reaches a codepoint, i.e., a precise point of the app
binary. Also our approach uses app-specific events when the explora-
tion reaches a certain state, i.e., a Gate GUI. However, our approach
requires neither human effort to code ad-hoc policies nor the knowl-
edge of the app binary to preliminarily configure the exploration
technique. Instead, we detect Gate GUIs during the app exploration by
exploiting a Machine Learning approach without any previous app-
specific knowledge. Moreover, we do not have to code before the ex-
ploration the app-specific events needed to exercise the detected Gate
GUI. Instead, we leverage input event sequences provided by the user
during the exploration.

Hu et al. [21] proposed Appdoctor, a testing tool able to perform a
quick exploration, called approximate execution. Their exploration
strategy is faster than real execution since it exercises an app by in-
voking directly event handlers. Our technique instead triggers real
events because they represent better real user interactions. Appdoctor
presents a component for the generation of proper input for text fields,
number pickers, lists and seekbars in order to improve code coverage. It
detects the type of text expected by a text field and applies input data
drawn from dictionaries predefined in the tool. Alternatively, it can
exploit rules defined by the user before the exploration to generate the
input for a specific GUI object. We also aim at improving the code
coverage reached by the app exploration. Unlike Appdoctor, our ap-
proach does not need app-specific inputs defined by the user before the

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

97

exploration. Instead, we exploit input event sequences provided by the
manual user intervention during the exploration.

AndroGenerator [5] generates network traffic through automated
exploration of Android apps. Its authors pointed out the limitations of
their adopted technique since it is not able to provide right inputs to
trigger the app code that generates network traffic. Therefore, their
approach exploits also input event sequences defined by the user before
the app exploration. Instead, in our approach input event sequences are
provided during the exploration by the manual user intervention.
Therefore, we do not need any previous app-specific knowledge.

The main limitation of these approaches is that they require pro-
gramming skills to understand the app-specific GUI structure and/or
configure the AGET to properly manage each distinct Gate GUI. These
approaches are indeed human-intensive and may not extend to different
applications.

2.4. AGETs exploiting manual user intervention

These AGETs combine automatically generated input event se-
quences with manual user intervention. In this way, they obtain human
knowledge necessary to achieve a meaningful app exploration at run-
time.

Dynodroid, proposed by Machiry et al. [13], is a system that gen-
erates relevant input sequences to Android apps. They clearly expressed
the need to introduce human intelligence for exercising some app
functionality that cannot be exercised otherwise by an AGET. Like us,
their technique allows the user to generate arbitrary events directly on
the app UI. To this aim, a Dynodroid user must first stop manually the
automated exploration. Instead, our approach can automatically stop
the automated event generation when a Gate GUI is detected.

NetworkProfiler [22], is a tool that implements a technique for in-
ferring fingerprints of Android apps from the traffic they generate. It
allows to perform complex input event sequences by fuzzing and re-
playing manual user traces captured before the exploration. We also
exploit Capture and Replay but, unlike NetworkProfiler, we capture
manual user traces during the exploration.

Another work that combines automated GUI exploration with cap-
tured user event sequences through machine learning has been pro-
posed by Ermuth and Pradel [16] in the field of Web apps testing. This
work defines a macro-based test generation approach for client-side
Web applications. It aims at augmenting automated test generation
techniques with complex sequences of events that represent realistic
user interactions. A macro event abstracts a single logical step that users
commonly perform to interact with real apps. This approach exploits
machine learning techniques to cluster multiple similar event sequences
belonging to different recorded usage traces and to infer from them
single macro events. Instead, in our work we use machine learning to
achieve a different goal, i.e., to train a classifier to detect Gate GUIs by
providing it GUIs belonging to real Android apps. Both approaches
require recorded usage traces to augment the automated GUI explora-
tion. However, juGULAR captures usage traces only when a Gate GUI is
detected for the first time during the app exploration. Instead, the
macro-based technique requires adequate sets of traces to be pre-
liminary recorded for each analyzed app.

These approaches are promising since they obtain human knowl-
edge directly from manual intervention without needing programming
skills or ad-hoc tool configurations, but they still suffer from some
limitations. In fact, a Dynodroid user has to be constantly involved in
the automated exploration in order to recognize a Gate GUI and in-
tervene to properly exercise it. The other approaches belonging to this
group, instead, require adequate sets of manual traces that exploit app-
specific knowledge and need to be recorded before the app exploration.

3. Motivating example

In this section, we present a motivating example to show how the

exploration of two real Android apps improves when their Gate GUIs
are unlocked. In this work, we focused on two classes of Gate GUIs:
Login and Network Settings.

Login Gate GUIs offer the login feature to registered users. These
GUIs require the users to provide the credentials they used to register
themselves to the app provider in order to be authenticated. The login
feature usually allows to gain access to app functionality restricted to
registered users only. Only through the insertion of valid and previously
registered account credentials the exploration of the remaining parts of
the application is allowed. Network Settings Gate GUIs are GUIs ex-
posing Settings features to configure network parameters, such as:
URLs, server address, port numbers, channels. This feature is necessary
to configure the app access to remote resources.

We selected two publicly available Android mobile apps that expose
Gate GUIs, e.g., Twitter5 and Transistor6. Twitter renders the Login
Gate GUI shown in Fig. 1(a), whereas Transistor exhibits the Network
Settings Gate GUI reported in Fig. 1(b).

The Twitter Login Gate GUI requires valid and registered account
credentials, without which the access to the app features that are
available only to authenticated users is restricted. A purely automated
exploration approach could be able to generate syntactically valid login
and password, but it cannot be able to automatically generate text
strings actually corresponding to a valid Twitter user account. This
information should be necessarily defined by a human tester. The
Transistor Network Settings Gate GUI requires the user to specify a
valid audio stream URL to be reproduced. This scenario is very difficult
to be resolved by a fully automated approach; even if it is able to au-
tomatically generate syntactically valid URLs, it may not be able to
generate any correct URL actually corresponding to an audio stream.

First, we explored these apps using the current state-of-the-practice
AGET, Monkey, in its default configuration. Both explorations lasted
one hour and were performed on an Android Virtual Device (AVD).7 We
monitored the explorations of Monkey and noticed that it did not un-
lock the two Gate GUIs, being unable to provide correct credentials for
the Twitter authentication, or a valid streaming URL to configure
Transistor.

Then, we manually unlocked the Gate GUIs and ran Monkey again
on both apps. Also in this case, Monkey was executed in its default
configuration for the duration of an hour. To unlock the Gate GUIs, we
interacted manually with the AVD where the apps were installed to
provide proper input event sequences able to unlock them.

At the end of each exploration, we evaluated the covered Activities
and inferred the Dynamic Activity Transition Graph (DATG) model
[27]. It is a graph whose nodes represent the explored Activities and the
edges render the transitions triggered at runtime. We enriched this
model by adding weights on each edge that indicate the number of
times the transition has been traversed.

We inferred the DATG model from the analysis of the system mes-
sage log dumped by the Android Logcat8 tool. This did not require any
app code instrumentation. We parsed the system message log and ex-
tracted the sequence of the names of the Activities that were created
during the app exploration. Activities having different names have been
considered different nodes of the DATG. Each edge of the DATG links
two consecutive Activities in the sequence. Android may not create an
Activity every time it is encountered during the exploration but it could
reuse a previously created instance of the same Activity9. Therefore, we
had to enable the on-device “Don’t keep activities” developer

5 Version 6.40.0 - https://play.google.com/store/apps/details?id=com.
twitter.android.
6 Version 2.2.0 - https://f-droid.org/repository/browse/?fdid=org.y20k.

transistor.
7 https://developer.android.com/studio/run/emulator.html.
8 https://developer.android.com/studio/command-line/logcat.html.
9 https://developer.android.com/reference/android/app/Activity.html.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

98

https://play.google.com/store/apps/details?id=com.twitter.android
https://play.google.com/store/apps/details?id=com.twitter.android
https://f-droid.org/repository/browse/?fdid=org.y20k.transistor
https://f-droid.org/repository/browse/?fdid=org.y20k.transistor
https://developer.android.com/studio/run/emulator.html
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/reference/android/app/Activity.html

option that destroys every Activity as soon as the user leaves it. In this
way, we were sure that each explored Activity was created and thus
logged. Of course, this option may change the app behavior, introdu-
cing additional invocations of Android framework callback methods.
However, a similar behavior may be observed also when the app is
exposed to other common events, such as the orientation change event
[29]. Since we enabled this option in all the Monkey runs, we believe
that our comparison is fair and the usage of the “Don’t keep ac-
tivities” option is acceptable for our purposes.

Fig. 2 shows the DATGs inferred after the two explorations of
Twitter.

As we can notice from the DATG shown in Fig. 2(a), Monkey was
able to discover only 4 different app Activities in the first run, where the
Login Gate GUI was not unlocked. After the Gate GUI was unlocked,
Monkey explored up to 14 previously unreached Activities that are
highlighted in white in Fig. 2(b). These new Activities expose func-
tionality exclusively available to authenticated users, such as showing
the user timeline, posting a new tweet or sending a private message to a
another Twitter user. We evaluated also the network traffic produced
by the app. To this aim, we counted the number of bytes transmitted
over the network during the app explorations. To obtain this data, we
used the TCPdump10 command-line packet analyzer. The unlocking
brought improvements also in network traffic generation. Without un-
locking, Monkey generated around 1MB of network traffic that in-
creased up to 380MB when valid login credentials were provided.

We were not able to measure the code coverage achieved during the
exploration, since the Twitter app provided compiled and obfuscated
code.

As for Transistor, we had access to the app source code. Therefore,
besides the generated network traffic and the covered Activities, we
were also able to measure the source code coverage. To this aim, we
had to preliminarily instrument the app source code by exploiting the
JaCoCo11 code coverage library.

As Fig. 3(a) shows, the exploration of the Transistor app was limited
to 2 Activities, when no valid URL was provided in the Main Activity.
Instead, Monkey was able to reach a further Activity when a valid audio
stream URL was provided, as shown in Fig. 3(b). This additional Ac-
tivity offered features for controlling and reproducing the audio stream
located at the URL provided to unlock the Gate GUI.

Without unlocking, Monkey was able to cover just 9.51% of app
LOCs (Lines of Executable Code) and did not generate network traffic,
whereas it executed the 58.25% of LOCs and transmitted more than
27MB over the network when a valid audio stream URL was provided.

We also explored the same two apps using three state-of-the-art
automated GUI exploration tools, i.e., Sapienz,12 AndroidRipper13 and
Dynodroid.14 Each tool is representative of one the three AGET types
reported in Section 2, respectively. We analyzed how they dealt with
the considered Gate GUIs during the exploration.

We observed that Sapienz, implementing an AGET relying on pre-
defined input generation rules, did not unlock autonomously the two
Gate GUIs, producing unsatisfactory results in terms of covered
Activities, LOCs, and generated network traffic.

As for AndroidRipper and Dynodroid, we were able to unlock the

Fig. 1. Gate GUIs exhibited by the considered Android apps.

10 http://www.tcpdump.org/.

11 http://www.eclemma.org/jacoco/.
12 https://github.com/Rhapsod/sapienz.
13 https://github.com/reverse-unina/AndroidRipper.
14 http://www.seas.upenn.edu/mhnaik/dynodroid.html.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

99

http://www.tcpdump.org/
http://www.eclemma.org/jacoco/
http://github.com/Rhapsod/sapienz
https://github.com/reverse-unina/AndroidRipper
http://www.seas.upenn.edu/mhnaik/dynodroid.html

Fig. 2. Twitter app: the DATGs inferred by Monkey explorations without (a) and with (b) Gate GUI unlocking.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

100

Gate GUIs and to obtain exploration improvements similar to the ones
achieved by Monkey. However, these improvements required a con-
siderable manual effort in both cases.

AndroidRipper provides configuration APIs that enable the tool to
fire user-defined event sequences on GUI objects belonging to given app
GUIs. We used these APIs to unlock the Gate GUIs of the considered
apps. However, the tool configuration required a considerable manual
effort. We had to analyze the properties of the specific Gate GUIs and
extract the ones needed to detect them at runtime. Moreover, we had to
identify the GUI objects to be exercised and define the corresponding
events.

Dynodroid implements instead an AGET that can exploit manual
intervention at runtime. Therefore, a human was actively involved for
the entire duration of the explorations to supervise the Dynodroid ex-
ecution and to manually unlock the Gate GUIs. He had to monitor the
Activities that were encountered by Dynodroid and to promptly stop
the exploration each time he recognized a Gate GUI. After the human
stopped Dynodroid, he manually unlocked the GUI by providing a valid
input event sequence and then restarted the automatic exploration.

These experiences exposed the limitations of currently available
techniques for automated app exploration and motivated us to in-
vestigate novel and more effective solutions.

4. A Machine Learning-based approach for detecting Gate GUIs

In this paper, we present juGULAR, an AGET that is able to auton-
omously detect Gate GUIs during an app exploration and to unlock
them exploiting human intervention. To define juGULAR, we had to
preliminarily find an approach for automatically recognizing whether
the GUIs that are encountered during the app exploration belong to a

Gate GUI class.
To solve this kind of classification problems, rule-based or machine

learning techniques are commonly employed in the literature [30].
Rule-based approaches exploit expert knowledge to make decisions.

Rules are obtained from experts who encode their conditional beliefs
into heuristics manually crafted for each specific class. These rules are
usually elicited by error-prone and time-consuming processes that re-
quire a strong expertise about the considered domain [31]. Moreover,
these rules work effectively only if all the possible situations under
which decisions can be made are known ahead of time.

Instead, Machine Learning approaches aim to learn how to classify
automatically through experience [32]. Therefore, they do not require
expert involvement and are more effective at deriving general rules for
classification problems, finding insights in data that may be under-
estimated by a human.

In our work, we decided to adopt a Machine Learning (ML) ap-
proach that trains a supervised classifier to determine the class a given
GUI belongs to. Fig. 4 shows the general framework used for the su-
pervised classification15. According to this framework, the supervised
classification foresees two main phases: Training and Prediction.
During the Training phase, a feature extractor is used to convert each
input item instance to an abstract representation. This representation
consists in a Feature Vector that captures the basic information about
each input that should be used to classify it. In this phase, each input
item is provided with a label that identifies the class the item belongs
to. Pairs of feature vectors and labels are fed into a machine learning
algorithm to generate a classifier model. The trained classifier can be
used to predict the class of unseen input item instances. During the
Prediction phase, the same feature extractor is used to convert unseen
inputs to feature vectors. These feature vectors are then fed into the
classifier model, which generates predicted labels.

To obtain the feature vector associated to a GUI, our approach relies
on a component-based GUI description model that abstracts the GUI in
terms of its component objects and their properties [29,33,34]. In
particular, our GUI description leverages the XML GUI representation
provided by UI Automator.16 Among all the component object proper-
ties, we consider the ones that contain textual information, i.e., id, text,
hint, and content description. Fig. 5 shows an example of a GUI and an
excerpt of its XML description.

We assume that the descriptions of GUIs belonging to the same Gate
GUI class are likely to share common textual information that we refer
to as keywords. We select as features the presence or absence of such
keywords in the values assumed by the considered properties.

In our approach, we did not want to arbitrarily predefine the key-
words to be considered in the classification problem, but we wanted to

Fig. 3. Transistor app: the DATGs inferred by the Monkey explorations without
(a) and with (b) Gate GUI unlocking.

Fig. 4. Supervised classification framework. The upper part of the figure (a)
represents the Training phase. The lower part of the figure (b) shows the
Prediction phase.

15 http://www.nltk.org/book/ch06.html.
16 https://developer.android.com/training/testing/ui-automator.html.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

101

http://www.nltk.org/book/ch06.html
https://developer.android.com/training/testing/ui-automator.html

empirically infer them for each considered Gate GUI class. For this
purpose, we chose as keywords the most frequent terms among the
GUIs belonging to the same Gate GUI class.

Fig. 6 presents our intuition about how a GUI can be characterized
by the presence of a set of keywords. The Figure reports four keywords
that should characterize Login Gate GUI descriptions and shows whe-
ther they are present in three GUI descriptions belonging to different
Android apps. The GUI instances in Fig. 6(a) and in Fig. 6(b) are ac-
tually Login screens and their descriptions present at least 3 out of the 4
distinctive keywords. Instead, the GUI instance in Fig. 6(c) is not a
Login screen and its description does not contain any of the considered

keywords.
In the following, we describe the process we designed to select the

keywords and for training the classifiers.
Our process is depicted in Fig. 7 and consists of three main activ-

ities: Dataset Construction, Keyword Extraction and Classifier Training. We
implemented it using the features provided by the Natural Language
Toolkit 3.2.517 platform.

This process is based on Information Retrieval approaches that solve
the problem of classifying documents into a set of known categories,

Fig. 5. A GUI (left) and an excerpt of its XML Description (right).

Fig. 6. GUI textual information content. The table in the lower part of the figure reports the presence (✓) or absence (✗) of the “forgot”, “login”, “password”,
“Facebook” keywords in the description of the Instagram (a), PicsArt (b), and Snapchat (c) GUIs shown in the upper part of the figure.

17 http://www.nltk.org/.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

102

http://www.nltk.org/

given a set of documents along with the classes they belong to Manning
et al. [32]. More specifically, we adopted semistructured retrieval since
we consider the XML representation of GUIs. This kind of approaches is
well-known and is used to solve several classification problems, such as
detection of spam pages, unwanted content, and sentiments, or email
sorting [32] and app reviews’ content classification [35]. To the best of
our knowledge, we are the first to use these techniques to solve the
mobile app GUI classification problem and to improve the app auto-
mated exploration.

The process is general and we exploited it for the two specific Gate
GUI classes considered in this study: Login and Network Settings. The
same process can be reused to build new classifiers for other GUI classes
we want to automatically detect.

4.1. Dataset construction

Since there was no existing base of knowledge to be used for our
purposes, we built our own dataset consisting of GUI descriptions be-
longing to real Android apps and labeled them according to our needs.

To this aim, we randomly picked 5000 real Android apps that were
distributed by the official Google Play store18 and recruited 100 Com-
puter Engineering M.Sc. students to obtain a set of labeled descriptions
of GUIs belonging to these apps. Each student was asked to manually
explore 50 of the selected apps and label their GUI interfaces by as-
signing them one of three possible labels: Login Gate GUI, Network
Settings Gate GUI, Other (i.e., a GUI that cannot be classified as one of
the two considered Gate GUI classes). The students were provided with
a GUI Labeler desktop application we developed to support the GUIs
labeling task. The tool allows to select a label and assign it to the de-
scription of the GUI currently rendered on the device screen connected
to the host PC. The tool was developed in Python and relied on the
Android Debug Bridge (adb).19 The tool produces as output an image
file of the captured screen in PNG format and the UI Automator GUI
hierarchy in XML format with the chosen label. Fig. 8 shows the in-
terface of the GUI Labeler tool.

We provided each student with a device equipped with Android 6,

that has been reset to the factory settings to ensure that each capture
was executed in the same conditions. Moreover, the system language
was set to English in order to avoid inconsistencies among the captures.
Each student was asked to complete the assigned task within a month
and to spend at least 15 min and not more than 30 min for exploring
each app.

Upon the completion of the GUI Labeling task by all the recruited
students, three Ph.D. students and a Postdoctoral Researcher having
knowledge of Android development, reviewed the labeled XML de-
scriptions aided by the correspondent screen captures in order to

Fig. 7. The Machine Learning based process for selecting the keywords and training Gate GUI classifiers. It is composed of three activities: Dataset Construction,
Keyword Extraction and Classifier training.

Fig. 8. An example of GUI Labeler tool interface. In this case the user captured a
Dropbox GUI and assigned it the “Login” label.

18 https://play.google.com/store/apps.
19 https://developer.android.com/studio/command-line/adb.html.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

103

https://play.google.com/store/apps
https://developer.android.com/studio/command-line/adb.html

validate them.
At the end of this step, we selected 400 XML descriptions for each of

the three considered labels and stored the resulting 1200 descriptions in
a repository of labeled GUIs.

4.2. Keyword extraction

This activity allows to obtain a set of distinctive keywords for each
Gate GUI class starting from GUI descriptions belonging to that class.
Therefore, it has to be repeated for each considered Gate GUI class.

To this aim, for each Gate GUI class we partitioned the set of 400
XML descriptions labeled as belonging to the considered class in two
subsets of 200 XML descriptions that we hereafter refer to as G1 and G2,
respectively. The G1 subset was submitted to a keyword extraction
process including linguistic preprocessing steps [32]. The G2 subset was
instead exploited for training the classifier.

The keyword extraction process consisted of five steps:

1. XML Nodes Extraction: in this step, each XML GUI description be-
longing to G1 was filtered to obtain the XML nodes related to its
Android View objects.20 These objects represent the elements
composing the GUI. We considered the values of the XML node at-
tributes containing textual information, i.e resource-id, hint, text,
content-desc. These values provided us a set of strings associated
with each GUI description.

2. Text Normalization: in this step, special symbols and punctuation
marks were removed from all the strings and each string was split
into its constituent words. If a word was an identifier using the
camel-case convention, it was split into the composing words (e.g.,
“processFile” is split into “process” and “File”). Finally, we con-
verted each resulting word to lowercase.

3. Stop words Removal: in this step, we removed English stop words (like
and, a, to, do, of) from the normalized strings. These stop words
frequently appear in many GUI description and do not help much in
differentiating one GUI description from another. We also removed
terms specifically related to the Android SDK that are general and
are not discriminating to identify Gate GUIs, e.g., View, Toolbar,
Button.

4. Stemming: in this step, words were transformed to their root forms
exploiting the Porter Stemming Algorithm.21For example, loca-
lization, localized, localize, and locally were all sim-
plified to local.

5. Term Frequency Evaluation: in this step, the words obtained from the
XML GUI descriptions belonging to G1 were gathered in a single set
of terms, named T1. For each term of T1, the term frequency (tf)
value was calculated producing a rank. The tf value of a term is
equal to the number of occurrences of the term in the document or a
corpus of documents [32]. In our study, we considered as corpus the
set of terms T1. As an example, if a term term1 occurs 40 times in T1,
then its tf value will be 40. The terms having a tf greater or equal to
a given threshold were selected and used to define a keyword set.
We used more threshold values to define different keyword sets. We
built seven sets of keywords, using threshold values varying from 5
to 35, with a step of 5. Each set of terms obtained at the end of this
process provided a candidate set of keywords.

In the following, we present a simple example to illustrate the
Keyword Extraction process. We consider to submit to the Keyword
Extraction process the description of a GUI with a button having
“Click here if you have problems logging in!” as textual label
and “login_troubleshooting_button” as identifier.

In the XML Nodes Extraction step, the Button View object is

identified and the values of its XML node attributes resource-id, hint,
text, content-desc are returned. The output of this step is the following
set of strings {Click, here, if, you, have, problems, logging, in!,
loginTroubleshooting_button}.

In the Text Normalization step, the “!” and “_” special symbols are
removed from the set. Moreover, the “loginTroubleshooting” string is
split into “login” and “Troubleshooting” strings. Finally, all the words
are converted to lowercase. As a result, the following set of strings is
obtained {click, here, if, you, have, problems, logging, in, login, trou-
bleshooting, button}.

In the Stop words Removal step, the English stop words “here”, “if”,
“you” and “in” along with the generic Android SDK term “button” are
removed from the set. The output of this step is the following set of
strings {click, problems, logging, login, troubleshooting}.

In the Stemming step, the words in the latter set are transformed in
their root form, obtaining the final set of terms {click, problem, log,
login, troubleshoot}.

This set of terms will be gathered with the ones obtained from the
other XML GUI descriptions belonging to the considered corpus. The
resulting set of terms will be submitted to the Term Frequency
Evaluation step, in which the tf value is calculated for each term and
compared against the considered threshold. The terms having a tf value
greater than the threshold will finally provide the set of keywords.

4.3. GUI classifier training

For each considered Gate GUI class, a distinct Binary classifier
[36,37] had to be trained. Binary classification is a type of supervised
learning in which a classifier is used to distinguish between a pair of
classes. It is trained by using examples of objects belonging to both
classes. We train a Login Gate GUI Binary classifier to predict whether a
GUI belongs to the Login Gate GUI class or not. Moreover, we train a
Network Settings Gate GUI Binary classifier to predict whether a GUI
belongs to the Network Settings Gate GUI class or not. To train each
classifier, We used two sets, the former consisting of 200 XML GUI
descriptions labeled as belonging to each considered Gate GUI class
(and different from the ones exploited in the Keyword Extraction step)
we previously referred to as G2. The latter, that we hereafter refer to as
G3, made of 200 XML GUI descriptions labeled as not belonging to the
considered class.

Each labeled GUI description belonging to G1 ∪G2 was auto-
matically processed by executing the XML Nodes Extraction, Text
Normalization, Stop Words Removal, and Stemming steps. Then, it was
associated to a Feature Vector of binary values in which the ith element
represents the presence (1) or absence (0) of the ith keyword in the GUI
description. This step was repeated seven times, each one considering a
different candidate set of features, thus obtaining seven distinct clas-
sifiers.

We decided to use Naïve Bayesian (NB) classifiers as Binary classi-
fiers. An NB classifier is a statistical classifier based on the
Bayes‘theorem that implements a simple, computationally efficient
classification algorithm. NB classifiers are widely employed in several
areas, including text classification, with comparable results to decision
trees and artificial neural networks [38].

We trained and validated each classifier using a 10-*fold cross-va-
lidation process. In this process, an original dataset is randomly divided
into 10 equal-sized subsamples that are exploited for 10 validation
steps. At each validation step, a single subsample is used for validation
and the other nine subsamples are utilized for training.

Finally, we compared the accuracies obtained by the seven classi-
fiers and chose the one achieving the best F-measure value [32]. For
both Gate GUI classes, the selected classifier was obtained using the set
of keywords corresponding to the tf threshold of 20.

Table 1 reports for both the considered Gate GUI classes the average
values of precision, recall and F-measure the selected classifiers ob-
tained over the 10 validation steps.

20 https://developer.android.com/reference/android/view/View.html.
21 https://tartarus.org/martin/PorterStemmer/.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

104

https://developer.android.com/reference/android/view/View.html
https://tartarus.org/martin/PorterStemmer/

5. The proposed Hybrid GUI Exploration Technique

In this Section, we present our hybrid GUI exploration technique
named juGULAR that targets Android mobile apps. Since Android apps
are event-based software systems [39,40], juGULAR explores the ana-
lyzed apps by automatically sending events to them. Our technique
explores mobile apps regardless of whether they run completely on the
Android device, or they belong to more complex and distributed sys-
tems. Indeed, juGULAR aims to explore the client-side Android app of
such systems and can interact with their remote side by events that are
fired on the UI of the Android client app.

Unlike other event-based exploration techniques reported in the
literature [12,34], juGULAR implements a novel approach that prag-
matically combines fully automated GUI exploration with Capture and
Replay, in order to enhance the app exploration and to minimize the
human involvement. It is able to automatically detect Gate GUIs during
the app exploration by exploiting classifiers that can be obtained
through the Machine Learning approach introduced in Section 4.
Moreover, it can unlock Gate GUIs by leveraging input event sequences
provided by the user through a Capture and Replay technique.

The exploration implemented by juGULAR extends the automated
GUI exploration algorithm presented in [12]. The workflow of juGULAR
is described by the UML Activity diagram shown in Fig. 9. The Activity
states describing the steps of the original algorithm are reported in
white, whereas the ones introduced by our approach are in gray.

Each app exploration is started by the App Launch step that installs
and launches the app on an Android device. In the Current GUI
Description step, a representation of the GUI state currently exposed by
the app is inferred. It includes the (attribute, value) pairs assumed by
GUI components at runtime. The GUI description is analyzed in the Gate
GUI Detection step to evaluate whether it is an instance of a Gate GUI.

If the current GUI is not a Gate GUI, the Input Event Sequence

Planning and Input Event Sequence Execution steps are executed. In these
steps, an event is chosen among all the ones triggerable on the current
GUI and then it is executed. juGULAR considers as triggerable the
predefined sets of events that can be fired on GUI objects having the
properties clickable, enabled, and visible set to true in the
current GUI description. The value of the type attribute of the GUI
object determines the set of possible events that can be triggered on it.
As an example, events like click and longclick can be fired on
Button and ImageView objects, whereas selectItem and scroll
events can be sent to ListView objects.

Otherwise, if juGULAR detects a Gate GUI, the Gate GUI Unlocking
step is executed. In this step, either an input event sequence will be
captured for unlocking a Gate GUI or a recorded input event sequence
will be replayed.

The Termination Condition Evaluation step evaluates whether the
termination condition is met and the exploration can be stopped.

The UML Statechart diagram in Fig. 10 provides an overview of how
juGULAR combines automated app exploration with Capture and Re-
play.

In the App Exploring state, juGULAR iteratively fires input event
sequences to the subject app according to a given input event genera-
tion strategy until it detects a Gate GUI, or a predefined termination
condition is met. When juGULAR detects a Gate GUI, it evaluates
whether it has been previously encountered or not. To this aim, it
compares the current GUI description with the ones of the Gate GUIs
already encountered during the app exploration. Two GUI descriptions
are considered as equivalent if they include the same set of objects and
the same values of the objects’ attributes [12].

If juGULAR detects a Gate GUI for the first time, it stores its GUI
description and transits to the Unlocking Input Event Sequence Capturing
state, where it captures an unlocking input event sequence that is
manually provided by the user.

When the capturing ends, juGULAR returns to the App Exploring
state. In this state, if juGULAR detects a Gate GUI that was previously
encountered, it either will continue the automated app exploration, or
will transit into the Unlocking Input Event Sequence Replaying state in
which the corresponding input event sequence is replayed. The choice
of the next state will depend on the value of a ReplayCondition
random boolean variable that assumes the true value with a pre-
defined probability ptrue. The usage of this variable prevents the ex-
ploration process from being biased by the user’s choice for unlocking a
given Gate GUI.

Table 1
Performance in terms of average values of precision, recall and F-measure of the
Login Gate GUI and Network Settings Gate GUI classifiers.

Login Gate GUI Network Settings Gate GUI

Precision 0.814 0.751
Recall 0.807 0.900
F-measure 0.807 0.813

Fig. 9. UML Activity Diagram describing the juGULAR workflow.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

105

At the end of the replaying, juGULAR returns to the App Exploring
state.

It is worth pointing out that, in the Replay step, non-determinisms of
the app may cause the app to expose a GUI that is different from the one
exercised in the Capture, or to behave differently from the recorded
behavior. In these cases, the recorded event sequence replay does not
guarantee that the Gate GUI will be correctly unlocked. This is a known
weakness of Capture and Replay approaches [16] and poses a limitation
to juGULAR. In fact, juGULAR returns in the App Exploring state after
each Replay, regardless of whether the recorded event sequence has
successfully unlocked a Gate GUI. In case of app non-deterministic
behavior, there is the risk that juGULAR indefinitely encounters the
same Gate GUI and tries to unlock it with the same recorded event
sequence. The ReplayCondition random boolean variable mitigates
this risk since it allows juGULAR to fire also event sequences different
from the recorded Unlocking Input Event Sequence when it re-en-
counters a Gate GUI.

5.1. The juGULAR platform

We implemented juGULAR in a software platform which targets
Android mobile apps. An overview of the platform architecture is re-
ported in Fig. 11.

The core of this architecture is the juGULAR component that em-
beds four inner components, namely App Explorer, Gate GUI Detector,
Gate GUI Unlocker, and Bridge.

The App Explorer implements the app exploration logic. The Gate
GUI Detector has the responsibility to automatically infer whether a GUI
belongs to a Gate GUI class. The Gate GUI Unlocker offers the feature to
unlock a Gate GUI. The Bridge allows the juGULAR components to in-
teract both with a User Terminal and with an Android Device where the
app being explored is installed and executed.

The User Terminal allows a user to launch juGULAR and to receive
notifications when a Gate GUI is detected for the first time and should
be unlocked. Thanks to this feature, the user does not have to monitor
the app exploration waiting for a Gate GUI detection, but juGULAR
notifies him when his intervention is needed for unlocking a Gate GUI.
When the user has accomplished the capture activity, he resumes the
app exploration via the User Terminal.

The juGULAR components and the User Terminal are deployed on a
host PC running either Windows or Linux operating system and

equipped with the Android SDK.22 The PC must be connected through
the Android Debug Bridge (adb)23 with an Android virtual device
(avd)24 hosted on the host machine, or a real Android device connected
to the host machine via a USB connection.

Our platform can be used to explore an Android app for reaching
different goals. Depending on the specific goal, additional tools can be
exploited for capturing relevant information about the performed ex-
ploration. As an example, in the study that we present in Section 6, we
aimed at evaluating the app coverage and the network traffic generated
by the exploration. To reach this goal, we instrumented the app source
code using the jaCoCo library25 and ran tcpdump26 on the host ma-
chine to get the network packets capture file in pcap format.

Additional implementation details about the platform components
are reported in the following.

5.1.1. App explorer component
This component can be configured to explore an app using different

exploration strategies, such as the Random or Active Learning ones
[12]. The strategy determines the next event to be triggered on the app.
The App Explorer uses the Trigger Event and Get GUI Description APIs
offered by the Bridge component to send events to the app and to re-
trieve the description of the current GUI rendered by the device, re-
spectively.

Moreover, it uses the Detect API offered by the Gate GUI Detector to
assess whether the current GUI can be classified as a Gate GUI. When a
Gate GUI is detected, the App Explorer uses the Unlock API provided by
Gate GUI Unlocker component for unlocking it.

5.1.2. Gate GUI Detector component
This component offers the Detect API that is exploited by the

AppExplorer to assess whether a GUI can be classified as a Gate GUI. Its
architecture is represented in Fig. 12 by a UML Component diagram.

The Gate GUI Detector comprises three components, i.e., the Gate
GUI Detector Manager, the Login Gate GUI Identifier and the Network

Fig. 10. UML Statechart Diagram describing how juGULAR combines automated app exploration and C&R techniques.

22 Available for free download at https://developer.android.com/studio/
index.html.
23 https://developer.android.com/studio/command-line/adb.html.
24 https://developer.android.com/studio/run/managing-avds.html.
25 http://www.eclemma.org/jacoco/.
26 http://www.tcpdump.org/tcpdump_man.html.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

106

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/run/managing-avds.html
http://www.eclemma.org/jacoco/
http://www.tcpdump.org/tcpdump_man.html

Settings Gate GUI Identifier. Each identifier is able to detect a different
Gate GUI class, i.e., Login and Network Settings.

The Gate GUI Detector Manager takes as input a GUI description in
XML format, forwards it to the inner Gate GUI Identifiers and gathers
their outputs. According to these outputs, the Gate GUI Detector Manager
returns a boolean value indicating whether a Login Gate GUI or a
Network Settings Gate GUI have been detected.

The Login Gate GUI Identifier and the Network Settings Gate GUI
Identifier exploit the Binary classifiers and the set of keywords obtained
by the approach proposed in Section 4. Each of these components is in
turn composed by a Feature Extractor and a Classifier component. The
Feature Extractor takes as input the GUI description and represents it as
a feature vector. To this aim, it elaborates the GUI description through
the preprocessing steps introduced in Section 4, i.e., XML Nodes

Extraction, Text Normalization, Stop Words Removal, and Stemming.
Then, it associates the GUI description to a vector of binary values,
where the ith element represents the presence (1) or absence (0) of the
ith keyword. Finally, it forwards the feature vector to the corresponding
Classifier.

The Gate GUI Detector is a modular ensemble of Binary classifiers
and thus it can be easily extended by introducing additional Gate GUI
identifiers for other classes of Gate GUIs.

5.1.3. Gate GUI Unlocker component
The Gate GUI Unlocker component provides the Unlock API that

requires as input a GUI description in XML format. It stores in a local
repository the descriptions of the Gate GUIs encountered during the app
exploration. Moreover, it stores for each GUI description the sequence

Fig. 11. UML Component diagram describing the juGULAR platform architecture.

Fig. 12. UML Component diagram describing the Gate GUI Detector architecture.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

107

of user events that was recorded to unlock the corresponding GUI.
When the Unlock API is invoked, the component checks whether the

input description matches with one of the descriptions stored in the
repository.

If the Unlocker does not find any matching GUI description, it re-
quires to capture a sequence of user events using the Capture API pro-
vided by the Bridge. Upon completion of the capturing, the input GUI
description along with the captured sequence of user events will be
stored in the repository.

Otherwise, the Unlocker either will invoke the Replay API to replay
the related sequence of user events, or will return the control to the App
Explorer, on the basis of the value assumed by the random boolean
variable ReplayCondition.

The Gate GUI Unlocker can be configured by setting the ptrue value
the ReplayCondition relies on. The default value of ptrue is 0.9.

5.1.4. Bridge component
The Bridge component allows juGULAR to interact with the device

where the app runs and with the User Command Prompt. It provides the
Trigger Event and Get GUI Description APIs that are used by the App
Explorer to send events to the app and to retrieve the XML description of
the current GUI rendered by the device, respectively. These APIs are
realized exploiting the UIAutomator framework.27

The Bridge provides also the Capture and Replay APIs that are used
by the Gate GUI Unlocker component. The Capture API sends a notifi-
cation on the User Terminal to the user about the occurrence of a Gate
GUI and records the event sequence the user performs to unlock it. The
Replay API is used for replaying the recorded user event sequence that
unlocks a specific Gate GUI.

Android encodes each user input event (e.g., Tap, Long Tap, Scroll,
Hardware Button Press) into a large group of kernel-level events. We
will refer to the former ones as high-level user events to distinguish them
from kernel-level events.

The Capture and Replay APIs have been developed exploiting the
getevent and sendevent tools, respectively.28 These tools, shipped within
the Android SDK, are able to capture and replay the kernel-level event
stream produced by the user interaction.

The getevent tool provides a live dump of kernel-level input events.
The captured stream contains information about the input events, such
as their timestamps, input device names, event types, and screen co-
ordinates. The sendevent tool allows developers to send kernel-level
events to the device.

As already reported in other works [41], the sendevent command
does not allow to set the timing between consecutive sent events.
Therefore, we had to develop an ad-hoc solution to replay the kernel-
level events with a proper timing. This solution is intended both to
avoid a too quick replay of high-level events and to faithfully replay
them. To this aim, we implemented in the Bridge a pipeline that post-
processes the input event stream captured by getevent and transforms it
into an output stream suitable to be replayed by sendevent. The pipeline
groups meaningful chunks of kernel-level events representing high-
level events, inserts delays between them, and translates the stream in
the format supported by sendevent.

The stream chunks are isolated using a set of clustering rules that
are based on timestamps and event encoding patterns that Android
exploits for transforming high-level user events into kernel-level ones.
We inferred these patterns by analyzing streams of kernel-level events
produced by triggering user events. The pipeline uses these rules to
decompose each high-level event into a sequence of lower level events,
e.g., Press, Release, Move. For clarity, we refer to these as low-level
events. Each low-level event is in turn composed by a sequence of
kernel-level events having the same timestamp and that is ended by a

SYN code made of a sequence of zero values.
Fig. 13 shows an example of a kernel-level event stream captured by

getevent and how the clustering rules abstract from it four types of high-
level events, i.e., Tap, LongTap, Scroll, and Key Home Press. The col-
umns in the Figure report the timestamp between square brackets, the
input device id followed by a colon, and an hexadecimal string re-
presenting the encoding of the kernel-level events. The leftmost brace
groups consecutive kernel-level events into low-level events, whereas
the rightmost brace groups low-level events into high-level user events.
The figure illustrates that a Tap event is composed by the sequence of
Press and Release low-level events between which there is a delay less
than 500 ms. A Long Tap is composed by a sequence of Press and Re-
lease between which there is a delay greater or equal to 500 ms. A
Swipe is made by a sequence of a Press and a Release interspersed with
one or more Move low-level events. A Key Home Press event is com-
posed by a sequence of a Key Home Down and a Key Home Up low-level
events.

Finally, the pipeline processes the captured stream composed by
kernel-level events and produces an unlocking sequence de-
scription file. This file will be provided to the Gate GUI Unlocker
component and it will be interpreted by the Bridge Replay API to unlock
the corresponding Gate GUI by sending the kernel-level events with the
proper timing. Fig. 14 reports the unlocking sequence description file
corresponding to the stream shown in Fig. 13. An unlocking sequence
description file includes sequences of kernel-level events supported by
sendevent along with specific commands, i.e., #Start, #End, #Sen-
dEvents, and #Sleep. The kernel-level events in this file are obtained
from the corresponding ones in the captured event stream by removing
the timestamps and the colons and by translating the hexadecimal va-
lues in decimal format. The #Sleep command is used to introduce
delays between events. The Bridge adds delays of 1500 ms between
kernel-level event chunks, each one representing a single high-level
event. This is intended to mitigate the risk of failures in the replay step
due to a time not long enough to complete a requested UI task, e.g., UI
updating, Web resource fetching. We found that a delay of 1500 ms is
long enough to complete mobile UI tasks in our benchmark apps.
Moreover, a delay of 600 ms is introduced between the Press and the
Release of Long Tap events to not mistake them for simple Tap events.

The event stream stored in the unlocking sequence description file
allows the Replay API to execute the events on the same screen co-
ordinates of the corresponding event stream acquired through the
Capture API. We chose to stick to the same coordinates since the
juGULAR architecture has the limitation that the same device is used
both for capturing and replaying user event sequences. We are aware
that if different devices want to be used in the Capture and Replay
steps, our solution should be enhanced.

6. Experiment

In this section, we describe the study we conducted to evaluate the
performance of juGULAR. The exploration technique implemented by
juGULAR can be exploited in different contexts and for reaching dif-
ferent objectives. Thus, in this study, we considered two usage scenarios
of juGULAR: software testing and mobile app network traffic signatures
generation.

Our goal was to understand how the hybridization proposed by
juGULAR does impact the ability of fully automated GUI exploration
techniques in analyzing apps and at what cost. Moreover, we were in-
terested in evaluating how juGULAR compares with other state-of-the-
practice AGETs. More precisely, the study aimed at answering the fol-
lowing three research questions:

RQ1: How does the hybridization introduced by juGULAR affect the
effectiveness of an automated exploration technique?
RQ2: How does the manual intervention required by juGULAR affect
the costs of the hybrid exploration approach?

27 https://developer.android.com/training/testing/ui-automator.html.
28 https://source.android.com/devices/input/getevent.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

108

https://developer.android.com/training/testing/ui-automator.html
https://source.android.com/devices/input/getevent

RQ3: How does the exploration effectiveness of juGULAR compare
to the effectiveness of the AGET implemented by the state-of-the-
practice Monkey tool?

6.1. Objects selection

The presence of Gate GUIs in the object Android apps was a re-
quirement for carrying out this study. Therefore, we needed to select
apps that exposed at least one GUI belonging to the considered Gate
GUI classes. To this aim, we chose a subset of apps from the official
Google Play store whose GUIs belong to the dataset we built in the
process described in Section 4 and that were not used in the Keyword
Extraction and Classifier Training activities. In addition, since we
wanted to evaluate also the code coverage reached due to the app ex-
ploration, we required that the selected apps belonged also to F-
Droid.29 F-Droid is a well-known repository of Free and Open Source
Software (FOSS) applications for the Android platform that has been
widely used in many other studies on Android proposed in the literature
[2]. Among the apps that satisfied these criteria, we randomly chose a
sample made of 14 apps. Table 2 reports for each app its ID, the app
name, the name of the Android app package, the considered app ver-
sion, and a brief description of the app functionality. Table 3 instead
shows for each app the app ID, the total number of Activities, the
number of LOCs, the number of classes, the number of methods, and the
presence of GUIs belonging to the considered Gate GUI classes.

We considered only the Java classes that contain the app code, i.e.,
we took into account neither the Java classes belonging to third party
libraries nor the code written in native C/C++ used to develop the
app.

As it emerges from the data shown in the tables, the selected apps

are sufficiently diverse since they offer different functionality and have
a variable size both in terms of Activity number and LOCs.

6.2. Subjects selection

Since the juGULAR approach requires manual intervention of an
end user to overcome the encountered Gate GUIs, we recruited 14M.Sc.
Software Engineering students. The selected subjects had to be involved
in the study for providing the Unlocking Input Event Sequences, when
needed, during the automated exploration of the object apps. They had
a background on software testing and on network traffic analysis ma-
tured during their studies. They were selected by an interview. They
had no prior in-depth knowledge about the selected apps nor a thor-
ough knowledge about the underlying concepts of the Android
Framework.

6.3. Metrics definition

In this section we describe the metrics we chose to answer the
proposed research questions.

6.3.1. Effectiveness metrics
Since in the study we focused on software testing and network

signatures generation scenarios, we decided to evaluate the effective-
ness of juGULAR as the ability to: (1) cover app Activities, (2) cover app
Lines of Code (LOC), and (3) generate network traffic. To this aim we
defined the following set of metrics:

• The Covered Activities percentage (CA%) reports the percentage of
the Activities covered during the exploration on the total number of
App Activities; it can be measured according to the following for-
mula:

Fig. 13. A sequence of kernel-level events
captured by getevent. Each line reports a
kernel-level event characterized by its time-
stamp, input device id, and the corresponding
hexadecimal code. The leftmost brace groups
consecutive kernel-level events into low-level
events, whereas the rightmost brace groups
low-level events into high-level user events.

29 https://f-droid.org/.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

109

https://f-droid.org/

=CA Covered Activities
App Activities

% #
#

*100

• the Covered Lines of Code percentage (CLOC%) defines the percen-
tage of the app LOC exercised during the automated exploration on
the total number of the App LOC. It is expressed by:

=CLOC Covered LOCs
App LOCs

% #
#

*100

• the Network Traffic Bytes (NTB) metric responds to the need to
evaluate the ability of the technique to trigger the generation of
network traffic; it measures the number of bytes received or sent on

Fig. 14. An Unlocking Sequence Description File. The sequence is contained
within #Start and #End commands and includes five #SendEvents com-
mands, followed each by a sequence of kernel-level events to be provided to the
sendevent tool. The #Sleep commands are used to introduce delays between
consecutive events.

Table 2
The Android apps involved in the study.

App ID App name Package name Version App description

A1 Flym News Reader net.fred.feedex 1.9.0 Simple, modern and totally free RSS reader.
A2 Conversations eu.siacs.conversations 1.19.5 Jabber/XMPP client for Android.
A3 DAVdroid at.bitfire.davdroid 1.5.0.3-ose Calendar synchronization app.
A4 Transistor Radio org.y20k.transistor 2.2.0 App for listening to radio over internet.
A5 k9-Mail com.fsck.k9 5.206 Email client supporting multiple accounts.
A6 mGit com.manichord.mgit 1.5.0 Git client and text editor.
A7 Muspy com.danielme.muspyforandroid 3.4.48 Client for Muspy.com.
A8 OpenRedmine jp.redmine.redmineclient 3.20 Android Redmine client.
A9 OwnCloud com.owncloud.android 2.3.0 Android client for private ownCloud Server.
A10 PortKnocker com.xargsgrep.portknocker 1.0.11 App that pings a specific TCP/UDP port.
A11 LibreTorrent org.proninyaroslav.libretorrent 1.4 Original Free torrent client.
A12 Connectbot org.connectbot 1.9.2-oss Powerful open-source Secure Shell (SSH) client.
A13 PodListen com.einmalfel.podlisten 1.3.6 Free Podcast app.
A14 ServeStream net.sourceforge.servestream 0.7.3 Open source HTTP streaming media player and media server browser.

App ID: unique identifier of the app.
App Name: name of the app.
Package Name: name of the application package.
Version: version of the app.
App Description: description of the main functionality offered by the app.

Table 3
Characteristics of the Android apps involved in the study.

App ID # App
Activities

App LOC # App
Classes

App
Methods

Presence of Gate
GUIs

Login Network
Settings

A1 8 4487 195 762 ✗

A2 20 23,548 634 3675 ✗

A3 10 4498 284 850 ✗ ✗

A4 3 2313 135 424 ✗

A5 27 29,829 919 5249 ✗ ✗

A6 10 4394 232 921 ✗ ✗

A7 10 3671 258 1035 ✗

A8 16 9638 495 2716 ✗ ✗

A9 22 18,840 481 2973 ✗ ✗

A10 5 1272 97 321 ✗

A11 9 8436 247 1436 ✗

A12 12 7256 236 1198 ✗ ✗

A13 4 3904 210 681 ✗

A14 13 7256 200 1079 ✗

App ID: unique identifier of the app.
App Activities: number of Activity classes of the app.
App LOC: overall number of executable Lines Of Code of the app.
App Classes: overall number of classes of the app.
#App Methods: overall number of methods exposed by the classes of the app.
Presence of Gate GUIs: the ✗ marker indicates the type of Gate GUI exposed by
the app.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

110

the network by the app during the exploration and it is expressed by
the following formula:

= +NTB App Sent Bytes App Received Bytes# #

6.3.2. Manual intervention cost metric
To evaluate the cost of the manual intervention required by

juGULAR, we considered for each app exploration process, the time
spent in each capture activity, i.e., CaptureTimei, and the Total
Exploration Time of the technique. Therefore, we introduced the:

• Manual Intervention Time Percentage (MIT%) that defines the per-
centage of time spent in the human interventions required for un-
locking the encountered Gate GUIs on the total exploration time. It
is expressed by:

=
∑

MIT
CaptureTime

TotalExplorationTime
% *100i i

6.4. Experimental procedure

The experimental procedure we designed for carrying out the study
consisted of three sequential steps: Training, Apps Exploration, Data
Collection and Analysis.

In the Training step, two researchers involved in the definition of
juGULAR explained its approach to the selected subjects. The training
was carried out through examples, where the researchers illustrated
how the technique works, the type of Gate GUIs it is able to detect and
the features it provides for unlocking them. In order to verify that all
the subjects had correctly understood the approach and how to provide
Unlocking Input Sequences when needed, in the last part of the
Training, the subjects were asked to perform an exploration process on
a sample Android app we appositely developed. The sample app ex-
posed both a Login and a Network Settings Gate GUIs. Each subject was
asked to provide Unlocking Input Sequences when needed. We did not
instruct the subjects on the Unlocking Input Sequence to provide, they
were free to insert the sequence they considered the most appropriate.
At the end of this process, we analyzed the results of the exploration
sessions. All the subjects were able to correctly adopt juGULAR and to
provide the Unlocking Input Event Sequences. The entire Training step
lasted 8 h.

In the Apps Exploration step, we executed three different exploration
processes. In the first process we used juGULAR, in the second one we
exploited juGULAR with the Hybridization Disabled, and in the third
we employed Monkey. JHD is an ad hoc juGULAR configuration that
performs the automated app exploration without exploiting the hybrid
features, i.e., detection and capture and replay. In the following, we
name JHE the actual implementation of juGULAR. Since Monkey im-
plements a random app exploration and we wanted to implement a fair
comparison among the considered tools, we configured also JHE and
JHD to explore the apps using a random exploration strategy.
Regarding the process involving JHE, we decided to repeat each app
exploration with different subjects, in order to mitigate the dependence
of the exploration effectiveness on a specific subject’s judgment. We
divided the selected subjects in 2 groups made of seven students,
namely G1 and G2. We gave the subjects of each group the task of

exploring 7 of the object apps, that were randomly assigned to each
group. Table 4 reports the object apps assigned to the groups. To carry
out the exploration tasks with JHE, we provided each student with a PC
equipped with the tool. The students had to launch the app explorations
and to intervene in the process only when a Gate GUI was encountered
for the first time. For each app, since the explorations were random,
three runs lasting 60 min had to be executed by each subject. We
configured the ReplayCondition to assume the true value with a
probability =p 0.8true so that the recorded Unlocking Input Event Se-
quences were not the only ones to be executed when a Gate GUI was
detected. At the end of the Exploration step, we obtained 21 exploration
runs for each app. A researcher controlled that subject performed the
experiment according to the instructions provided in the Training step.
The experiment was conducted under “exam conditions”, i.e., subjects
were not allowed to communicate with others for not biasing the ex-
perimental findings. As to the processes involving JHD and Monkey, we
launched 21 exploration runs lasting 60 min for each app. In this way
we obtained the same number of explorations as JHE. All the explora-
tions were carried out on desktop PCs having an Intel(R) Core(TM) i7
4790@3.60 GHz processor and 8GB of RAM, running a standard Nexus
5 Android Virtual Device (AVD)30 with Android API 19; the host PC was
equipped with the Ubuntu OS, version 16.04. Each experiment was
executed on a newly created AVD.

In the Data Collection and Analysis step we analyzed the reports
produced by JHE, JHD, and Monkey to obtain the number of Activities
and LOC covered during the explorations, as well as the generated
network traffic bytes for the three exploration processes. As for the
explorations with JHE, we also evaluated the capture times spent by
each subject during the three exploration runs performed on each app.

6.5. Experimental results

Table 5 reports the average effectiveness values we measured for the
explorations carried out with JHE, JHD and Monkey, respectively. The
average values have been obtained with respect to the 21 exploration
runs for each app. The Table also reports the average values of all the
metrics calculated considering all the selected apps.

The same results are shown by the histograms in Fig. 15 that pro-
vide a graphical visualization and allow the comparison among the
average values of CA%, CLOC% and NTB obtained with JHD, JHE and
Monkey.

As emerged from the analysis of the reports produced by the JHE
explorations, juGULAR successfully detected all the Gate GUIs we
identified in the object apps. These data also showed that each subject
spent different amounts of capture time to unlock each Gate GUI.

In order to answer RQ1, we compared the average effectiveness
values obtained using JHE and JHD.

As regards the Activities exploration capability, the CA% data va-
lues reported in Table 5 show that JHE covered a greater percentage of
Activities than JHD in 13 out of the 14 object apps. Only for A10
(PortKnocker), juGULAR achieved the same results covering 3 out of 5
Activities either with or without the hybridization. However, the two
unexplored Activities of this app could not have been reached other-
wise, since one of them is rendered only for older Android versions and
the other one is accessible only from the app external widget. The
average CA% increment with JHE was of 23%, while the minimum and
maximum increment values were of 6.25% in A8 and up to 50% in A6,
respectively.

In the case of A8 (OpenRedmine), the reduced increment in
Activities coverage was essentially due to the choice of the input event
sequences values provided by the subjects to unlock the Login Gate
GUI. We observed that all the app features regarding the project man-
agement could not be exercised even after the unlocking. This

Table 4
The Android apps assigned to each group of students.

GROUP APP IDs

G1 A3, A4, A7, A9, A11, A12, A13
G2 A1, A2, A5, A6, A8, A10, A14

30 https://developer.android.com/studio/run/managing-avds.html.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

111

https://developer.android.com/studio/run/managing-avds.html

happened since all the credentials they provided were associated to
Redmine repository accounts having no associated projects. On the
contrary, as to the A6 (mGit) app, we obtained a considerable Activity
coverage increment with JHE, because at least one subject provided
Login credentials associated with accounts having non-empty project
repositories.

As for the Source Code exploration capability, the CLOC% data
values reported in Table 5 show that JHE always covered a wider
percentage of source code than JHD, with an increment of 22%, on
average. The minimum increment of code coverage percentage was of
1.54%, and was observed in A13 (PodListen). The Network Settings
Gate GUI exposed by the app was unlocked even without hybridization
since PodListen allows the user to subscribe to a podcast not only by
adding a podcast URL but also selecting a predefined podcast provided
by the internal podcast database. The maximum increment of code
coverage percentage was instead of 50.52%, and was observed in A4
(Transtistor). This app exposed a Network Settings Gate GUI that should
be unlocked to execute the code that implements the features for con-
trolling and reproducing audio streams. The only way to unlock this
Gate GUI was to provide a valid audio stream URL as had been done by
the subjects.

Regarding the ability of generating network traffic, the hybridiza-
tion allowed juGULAR to obtain impressive results. JHD was not able to
produce any network traffic in 5 out of the 14 object apps. Considering
all the apps, JHD was able to produce 1MB of network traffic, on
average. Instead, JHE produced more traffic than JHD in all the object
apps, with about 88MB of generated traffic, on average.

As for A10, we had the minimum increment of Network Traffic
Bytes of 2275 Bytes. This happened since the app exposed a Network
Settings Gate GUI that required a valid and reachable IP address along
with a valid Port number that were never provided without hy-
bridization. However, even the amount of network traffic the app
generated by unlocking this Gate GUI was still small since it consisted
only in a few TCP or UDP network packets used to ping the specified
ports.

In the A11 app, i.e., LibreTorrent, we noticed the maximum NTB
increment that consisted of over 667MB. This was obtained since the
subjects unlocked the Network Settings Gate GUI providing valid

Torrent URL that pointed to large files.
On the basis of these results we were able to answer the first re-

search question RQ1 and conclude that:

The hybridization introduced by juGULAR had a positive impact
on the exploration effectiveness in both the considered scenarios. It
allowed to obtain better results in terms of Covered Activities,
Covered LOC and Generated Network Traffic.

In order to address RQ2, we considered the cost of the manual in-
terventions required by the hybridization introduced by juGULAR.
Fig. 16(a) reports the average MIT% value for each app. The histogram
and the table reported in Fig. 16(b) show, for each app, the time spent
for the manual intervention and for the automated exploration during
the 180 min session time, averaged on all the subjects.

As Figure shows, the time for the manual intervention required by
JHE was on average lower than 3% of the entire exploration time for all
the considered apps. All the subjects were able to define the Unlocking
Input Event Sequence in less than about 5 min on average. For the A10
app, it took the subjects less than 40 s, on average, to define the
Unlocking Input Event Sequence since the app exposed a simple form in
which the subjects mostly inserted well-known IP addresses, e.g., the
localhost or the Google DNS addresses.

As for A2 (Conversations), the subjects had to unlock a Login Gate
GUI in which the user had to provide valid credentials of an account
registered to an existing Jabber/XMPP service. Since most of the sub-
jects did not own such an account, they spent time to create it before
unlocking the Gate GUI.

According to these results we could answer the second research
question RQ2 concluding that:

The manual intervention required by juGULAR has a limited im-
pact on the cost of the exploration technique, being always lower
than 3%.

Table 5
Effectiveness results of the app explorations performed by JHD, JHE, and Monkey.

JHD - juGULAR Hybridization Disabled JHE - juGULAR Hybridization Enabled Monkey

App ID CA% CLOC% NTB CA% CLOC% NTB CA% CLOC% NTB

A1 50 20.25 11,128 75 49.19 3,170,055 20 24.49 0
A2 30 8.33 0 50 18.64 352,196,871 30 5.65 0
A3 40 10 2,256,788 60 28.63 5,450,397 40 12.09 2,055,974
A4 66.7 12.21 0 100 62.73 38,894,905 66.6 10.18 0
A5 7.4 4.22 0 25.93 37.14 93,987,389 7.4 4.9 0
A6 30 14.43 16,890 80 46.61 3,259,397 40 19.18 15,404
A7 10 15.41 33,722 50 49.09 6,295,654 10 18.63 30,462
A8 25 4.96 0 31.25 16.09 74,088 25 6.01 0
A9 4.5 8.11 854,033 22.73 23.90 6,376,599 4.5 9.43 787,737
A10 60 53.62 0 60 60.53 2275 60 44.65 0
A11 12.63 22.22 2,834,611 44.4 39.4 670,369,445 33.3 25.83 4,947,046
A12 33.3 14.25 103,550 58.3 41.21 15,987,272 33.3 17.24 0
A13 91.6 41.8 6758 100 43.34 241,584 75 38.4 9978
A14 30.76 9.61 11,243,538 53.9 30.65 30,496,185 30.7 11.28 1,679,895

Avg 35.13 17.10 1,240,072 57.96 39.08 87,628,722 33.98 17.71 680,464

Avg: average values of the metrics calculated considering all the apps.
App ID: unique app identifier.
CA%: average percentage of covered Activities.
CLOC%: average percentage of covered executable lines of code.
NTB: average number of Bytes sent and received on the network by the app.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

112

Fig. 15. Average effectiveness results of the explorations executed by JHD, JHE, and Monkey.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

113

In order to answer the RQ3, we compared the effectiveness of JHE
and Monkey.

The data in Table 5 shows that JHE was always more effective than
the Monkey tool. On average, JHE was able to cover 24% more Ac-
tivities, 21% more LOCs and to generate 86 network traffic MBytes
more than Monkey.

The reported data allowed us to answer the third research question
RQ3:

jUGULAR is more effective than the state-of-the-practice tool
Monkey in exploring real Android apps.

6.6. Study conclusion

The experimental results showed that the hybridization of the au-
tomated exploration approach proposed by juGULAR produced in
average a considerable improvement of the exploration effectiveness.
They confirmed us the usefulness of our approach that allows the user
to provide knowledge at runtime rather than using pre-configured and
generic input event sequences. This is consistent with other work that
point out the complementarity between automated machine-generated
tests and human tests [42,43].

The fact that juGULAR was always able to outperform the other
tools in terms of generated network traffic suggests that this approach
may be especially useful in scenarios that leverage on realistic

Fig. 16. Costs of the manual interventions required by the hybridization introduced by juGULAR.

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

114

generated network traffic, such as ground-truth generation of mobile
app traffic [44] or mobile app network traffic signatures generation [4].

6.7. Threats to validity

The following threats affect the validity of our experimental study
[45].

6.7.1. Internal validity
In this study, a possible threat to the internal validity could have

been the assignment of the subjects to the objects. To mitigate the
possible bias, we randomly assigned the objects to the subjects. A
possible factor that could have influenced the outcome was the subject
experience. To mitigate this threat, we explored the same app multiple
times with different subjects. The outcome could be also influenced by
the Gate GUI classes we considered. A further experimentation con-
sidering a wider sample of Gate GUI classes should be carried out to
mitigate this threat.

Another possible threat to the internal validity is that the effec-
tiveness improvements that we observed in the experiment were not
actually due to the hybridization, but rather to other factors, such as the
randomness of the explorations. We tried to mitigate this threat by
executing 21 random explorations and involving 7 different subjects for
each app and by performing the validation task of the Data Collection
and Analysis step.

6.7.2. External validity
We are aware that the choice of object apps is a possible threat to

the external validity. The diversity of the selected apps can mitigate this
threat. However, to extend the validity of our results, a wider sample of
real Android apps including also industrial-strength apps from Google
Play store should be considered. Also choosing students as subjects of
the study may have affected its external validity. However, they present
characteristics that make them representative of possible future users of
automated exploration techniques. To further mitigate this threat, case
studies in real industrial settings should be carried out to assess the
validity of the approach on the field.

In the study we measured the manual intervention costs required by
juGULAR by the MIT% metric. Since this metric depends on the total
exploration time, the measured manual intervention costs are influ-
enced by the choice of the app run length and our conclusions may not
generalize beyond the considered experimental settings. We tried to
mitigate this threat using in our experiments the value of the app run
length that is adopted in state of the art works in Android app auto-
mated exploration. Indeed we set one hour as exploration time for each
app run, following the experimental setup used in the previous thor-
ough benchmark assessment study by Choudhary et al. [2] and in the
experiment performed by Mao et al. [18].

We cannot claim that our results generalize to other Gate GUI
classes. To further extend the validity of our study, an experiment in-
volving a wider set of Gate GUI classifiers trained and integrated in the
juGULAR platform should be carried out.

7. Conclusions and future work

Automated GUI exploration techniques are becoming widespread in
mobile app development processes, due to their capability to execute
time-consuming tasks. However, one of their critical issues is the lim-
ited capability of exploring the behavior of apps that require mean-
ingful sequences of input events on specific GUIs, i.e., Gate GUIs, in
order to exercise some of their functionality. In this paper, we ad-
dressed this issue by proposing juGULAR, a hybrid automated GUI ex-
ploration technique that pragmatically combines fully automated GUI
exploration with Capture and Replay in order to improve the app ex-
ploration and minimize the human intervention. Our technique le-
verages Machine Learning to train classifiers that we exploit to

automatically detect the occurrence of Gate GUI instances during the
exploration.

We implemented this technique in a software platform and vali-
dated it with an experiment involving 14 real Android apps. In this
work, we focused on two specific classes of Gate GUIs: Login and
Network Settings. The experiment showed that the app exploration can
improve thanks to the hybridization in terms of Covered Activities,
Covered LOC and Generated Network Traffic. The manual intervention
required by the technique had a limited impact on the entire explora-
tion costs. The experiment also showed that juGULAR was more ef-
fective in app exploration than the state-of-the practice automated
Android GUI exploration tool.

We are aware that juGULAR may suffer from the limitation in-
troduced by app non-determinism. As future work, we intend to address
the issues of non-deterministic Gate GUI, such as those exposed by
Games or containing CAPTCHAs, by investigating effective solutions to
handle them. We plan to extend juGULAR by considering more Gate
GUI classes besides the ones we have dealt with.

Finally, we plan to extend the validity of our experimental results by
carrying out an industrial case study involving real practitioners and a
wider set of Android apps. In addition, we would like to consider fur-
ther performance indicators, such as the diversity of generated network
traffic. This aspect is critical for assessing how realistic such traffic is
and it can be exploited in several areas, e.g., mobile app traffic ground-
truth generation and network traffic signatures generation. To this aim,
we intend to investigate suitable measurement approaches and metrics
for evaluating such diversity, since it is still an open issue in the lit-
erature.

Acknowledgments

The authors thank the anonymous reviewers for their valuable
feedback.

References

[1] H. Muccini, A.d. Francesco, P. Esposito, Software testing of mobile applications:
challenges and future research directions, Automation of Software Test (AST), 2012
7th International Workshop on, IEEE, Zurich, Switzerland, 2012, pp. 29–35,
https://doi.org/10.1109/IWAST.2012.6228987. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6228987 .

[2] S.R. Choudhary, A. Gorla, A. Orso, Automated test input generation for android: Are
we there yet? (E), Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), ASE ’15, IEEE Computer
Society, Washington, DC, USA, 2015, pp. 429–440, https://doi.org/10.1109/ASE.
2015.89. https://doi.org/10.1109/ASE.2015.89 .

[3] A. Memon, I. Banerjee, B.N. Nguyen, B. Robbins, The first decade of GUI rippin-
g:extensions, applications, and broader impacts, 2013 20th Working Conference on
Reverse Engineering (WCRE), (2013), pp. 11–20, https://doi.org/10.1109/WCRE.
2013.6671275.

[4] Y. Chen, W. You, Y. Lee, K. Chen, X. Wang, W. Zou, Mass discovery of android
traffic imprints through instantiated partial execution, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,
ACM, New York, NY, USA, 2017, pp. 815–828, https://doi.org/10.1145/3133956.
3134009. http://doi.acm.org/10.1145/3133956.3134009 .

[5] X. Su, D. Zhang, W. Li, X. Wang, AndroGenerator: an automated and configurable
android app network traffic generation system, Secur. Commun. Netw. 8 (18)
(2015) 4273–4288, https://doi.org/10.1002/sec.1341. sec.1341, https://doi.org/
10.1002/sec.1341 .

[6] M. Karami, M. Elsabagh, P. Najafiborazjani, A. Stavrou, Behavioral analysis of an-
droid applications using automated instrumentation, 2013 IEEE Seventh
International Conference on Software Security and Reliability Companion, (2013),
pp. 182–187, https://doi.org/10.1109/SERE-C.2013.35.

[7] S.N. Dutia, T.H. Oh, Y.H. Oh, Developing automated input generator for android
mobile device to evaluate malware behavior, Proceedings of the 4th Annual ACM
Conference on Research in Information Technology, RIIT ’15, ACM, New York, NY,
USA, 2015, p. 43, https://doi.org/10.1145/2808062.2808065. http://doi.acm.org/
10.1145/2808062.2808065 .

[8] M.M. Eler, J.M. Rojas, Y. Ge, G. Fraser, Automated accessibility testing of mobile
apps, 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), Vol. 00, (2018), pp. 116–126, https://doi.org/10.1109/
ICST.2018.00021. doi.ieeecomputersociety.org/10.1109/ICST.2018.00021 .

[9] A. Banerjee, L.K. Chong, S. Chattopadhyay, A. Roychoudhury, Detecting energy
bugs and hotspots in mobile apps, Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, ACM,

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

115

https://doi.org/10.1109/IWAST.2012.6228987
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6228987
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/WCRE.2013.6671275
https://doi.org/10.1109/WCRE.2013.6671275
https://doi.org/10.1145/3133956.3134009
https://doi.org/10.1145/3133956.3134009
https://doi.org/10.1002/sec.1341
https://doi.org/10.1002/sec.1341
https://doi.org/10.1109/SERE-C.2013.35
https://doi.org/10.1145/2808062.2808065
http://doi.acm.org/10.1145/2808062.2808065
https://doi.org/10.1109/ICST.2018.00021
https://doi.org/10.1109/ICST.2018.00021

New York, NY, USA, 2014, pp. 588–598, https://doi.org/10.1145/2635868.
2635871. http://doi.acm.org/10.1145/2635868.2635871 .

[10] X. Deng, T. Kameda, C. Papadimitriou, How to learn an unknown environment. I:
the rectilinear case, J. ACM 45 (2) (1998) 215–245, https://doi.org/10.1145/
274787.274788. http://doi.acm.org/10.1145/274787.274788 .

[11] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, D. Peleg, Graph exploration by a finite
automaton, Theor. Comput. Sci. 345 (2) (2005) 331–344, https://doi.org/10.1016/
j.tcs.2005.07.014. http://www.sciencedirect.com/science/article/pii/
S0304397505003993 Mathematical Foundations of Computer Science 2004.

[12] D. Amalfitano, N. Amatucci, A.M. Memon, P. Tramontana, A.R. Fasolino, A general
framework for comparing automatic testing techniques of android mobile apps, J.
Syst. Softw. 125 (2017) 322–343, https://doi.org/10.1016/j.jss.2016.12.017.
https://doi.org/10.1016/j.jss.2016.12.017 .

[13] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: an input generation system for an-
droid apps, Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, ACM, New York, NY, USA, 2013, pp. 224–234,
https://doi.org/10.1145/2491411.2491450. http://doi.acm.org/10.1145/
2491411.2491450 .

[14] D. Amalfitano, A.R. Fasolino, P. Tramontana, S. De Carmine, A.M. Memon, Using
GUI ripping for automated testing of android applications, Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2012, ACM, New York, NY, USA, 2012, pp. 258–261, https://doi.org/10.1145/
2351676.2351717. http://doi.acm.org/10.1145/2351676.2351717 .

[15] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, T. Xie, Automated test
input generation for android: are we really there yet in an industrial case?
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, ACM, New York, NY, USA, 2016,
pp. 987–992, https://doi.org/10.1145/2950290.2983958. http://doi.acm.org/10.
1145/2950290.2983958 .

[16] M. Ermuth, M. Pradel, Monkey see, monkey do: effective generation of GUItests
with inferred macro events, Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, ACM, New York, NY, USA, 2016, pp.
82–93, https://doi.org/10.1145/2931037.2931053. http://doi.acm.org/10.1145/
2931037.2931053 .

[17] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, D. Poshyvanyk,
Automatically discovering, reporting and reproducing android application crashes,
2016 IEEE International Conference on Software Testing, Verification and
Validation (ICST), (2016), pp. 33–44, https://doi.org/10.1109/ICST.2016.34.

[18] K. Mao, M. Harman, Y. Jia, Sapienz: multi-objective automated testing for android
applications, Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, ACM, New York, NY, USA, 2016, pp. 94–105, https://
doi.org/10.1145/2931037.2931054. http://doi.acm.org/10.1145/2931037.
2931054 .

[19] W. Choi, G. Necula, K. Sen, Guided GUI testing of android apps with minimal restart
and approximate learning, Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’13, ACM, New York, NY, USA, 2013, pp. 623–640, https://doi.org/10.
1145/2509136.2509552. http://doi.acm.org/10.1145/2509136.2509552 .

[20] S. Hao, B. Liu, S. Nath, W.G. Halfond, R. Govindan, PUMA: programmable ui-au-
tomation for large-scale dynamic analysis of mobile apps, Proceedings of the 12th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’14, ACM, New York, NY, USA, 2014, pp. 204–217, https://doi.org/10.
1145/2594368.2594390. http://doi.acm.org/10.1145/2594368.2594390 .

[21] G. Hu, X. Yuan, Y. Tang, J. Yang, Efficiently, effectively detecting mobile app bugs
with appdoctor, Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, ACM, New York, NY, USA, 2014, pp. 18:1–18:15, https://doi.
org/10.1145/2592798.2592813. http://doi.acm.org/10.1145/2592798.2592813 .

[22] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, D. Song, NetworkProfiler: towards au-
tomatic fingerprinting of android apps, 2013 Proceedings IEEE INFOCOM, (2013),
pp. 809–817, https://doi.org/10.1109/INFCOM.2013.6566868.

[23] L. Gomez, I. Neamtiu, T. Azim, T. Millstein, RERAN: timing- and touch-sensitive
record and replay for android, Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, IEEE Press, Piscataway, NJ, USA, 2013, pp. 72–81.
http://dl.acm.org/citation.cfm?id=2486788.2486799 .

[24] R. Mahmood, N. Mirzaei, S. Malek, EvoDroid: segmented evolutionary testing of
android apps, Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, ACM, New York, NY, USA, 2014,
pp. 599–609, https://doi.org/10.1145/2635868.2635896. http://doi.acm.org/10.
1145/2635868.2635896 .

[25] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, L. Zeng, Automatic text input
generation for mobile testing, 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), (2017), pp. 643–653, https://doi.org/10.1109/ICSE.

2017.65.
[26] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing ap-

proaches, Softw. Test. Verif. Reliab. 22 (5) (2012) 297–312, https://doi.org/10.
1002/stvr.456. https://doi.org/10.1002/stvr.456 .

[27] T. Azim, I. Neamtiu, Targeted and depth-first exploration for systematic testing of
android apps, SIGPLAN Not. 48 (10) (2013) 641–660, https://doi.org/10.1145/
2544173.2509549. http://doi.acm.org/10.1145/2544173.2509549 .

[28] D. Amalfitano, A.R. Fasolino, P. Tramontana, B.D. Ta, A.M. Memon, Mobiguitar:
automated model-based testing of mobile apps, IEEE Softw. 32 (5) (2015) 53–59,
https://doi.org/10.1109/MS.2014.55.

[29] D. Amalfitano, V. Riccio, A.C.R. Paiva, A.R. Fasolino, Why does the orientation
change mess up my android application? From GUI failures to code faults, Softw.
Test. Verif. Reliab. (2017), https://doi.org/10.1002/stvr.1654. e1654n/aE1654
stvr.1654.

[30] K. Seng, L.M. Ang, C. Ooi, A combined rule-based and machine learning audio-
visual emotion recognition approach, IEEE Trans. Affect Comput. PP (99) (2016) 1,
https://doi.org/10.1109/TAFFC.2016.2588488.

[31] G.A. Di Lucca, A.R. Fasolino, P. Tramontana, Web pages classification using concept
analysis, 2007 IEEE International Conference on Software Maintenance, (2007), pp.
385–394, https://doi.org/10.1109/ICSM.2007.4362651.

[32] C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval,
Cambridge University Press, New York, NY, USA, 2008.

[33] B.N. Nguyen, B. Robbins, I. Banerjee, A. Memon, GUITAR: an innovative tool for
automated testing of GUI-driven software, Autom. Softw. Eng. 21 (1) (2014)
65–105, https://doi.org/10.1007/s10515-013-0128-9. https://doi.org/10.1007/
s10515-013-0128-9 .

[34] I. Banerjee, B. Nguyen, V. Garousi, A. Memon, Graphical user interface (GUI)
testing: systematic mapping and repository, Inf. Softw. Technol. 55 (10) (2013)
1679–1694, https://doi.org/10.1016/j.infsof.2013.03.004. http://www.
sciencedirect.com/science/article/pii/S0950584913000669 .

[35] S. Panichella, A.D. Sorbo, E. Guzman, C.A. Visaggio, G. Canfora, H.C. Gall, ARdoc:
app reviews development oriented classifier, Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, ACM, New York, NY, USA, 2016, pp. 1023–1027, https://doi.org/10.1145/
2950290.2983938. http://doi.acm.org/10.1145/2950290.2983938 .

[36] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, An overview of
ensemble methods for binary classifiers in multi-class problems: experimental study
on one-vs-one and one-vs-all schemes, Pattern Recognit. 44 (8) (2011) 1761–1776,
https://doi.org/10.1016/j.patcog.2011.01.017. http://www.sciencedirect.com/
science/article/pii/S0031320311000458 .

[37] N. Garcia-Pedrajas, D. Ortiz-Boyer, An empirical study of binary classifier fusion
methods for multiclass classification, Inf. Fusion 12 (2) (2011) 111–130, https://
doi.org/10.1016/j.inffus.2010.06.010. http://www.sciencedirect.com/science/
article/pii/S1566253510000734 .

[38] J. Han, M. Kamber, J. Pei, Data mining, Concepts and Techniques, 3rd Ed., Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.

[39] F. Belli, M. Beyazit, A. Memon, Testing is an event-centric activity, Software
Security and Reliability Companion (SERE-C), 2012 IEEE Sixth International
Conference on, (2012), pp. 198–206.

[40] D. Adamo, D. Nurmuradov, S. Piparia, R. Bryce, Combinatorial-based event se-
quence testing of android applications, Inf. Softw. Technol. 99 (2018) 98–117,
https://doi.org/10.1016/j.infsof.2018.03.007. http://www.sciencedirect.com/
science/article/pii/S0950584918300429 .

[41] L. Gomez, I. Neamtiu, T. Azim, T. Millstein, RERAN: timing- and touch-sensitive
record and replay for android, 2013 35th International Conference on Software
Engineering (ICSE), (2013), pp. 72–81, https://doi.org/10.1109/ICSE.2013.
6606553.

[42] K. Mao, M. Harman, Y. Jia, Crowd intelligence enhances automated mobile testing,
Proceedings of the 2017 32th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, (2017), pp. 16–26.

[43] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, D. Poshyvanyk,
Mining android app usages for generating actionable GUI-based execution sce-
narios, 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
(2015), pp. 111–122, https://doi.org/10.1109/MSR.2015.18.

[44] V.F. Taylor, R. Spolaor, M. Conti, I. Martinovic, AppScanner: automatic finger-
printing of smartphone apps from encrypted network traffic, 2016 IEEE European
Symposium on Security and Privacy (EuroS P), (2016), pp. 439–454, https://doi.
org/10.1109/EuroSP.2016.40.

[45] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, Experimentation in
Software Engineering, Springer, 2012, https://doi.org/10.1007/978-3-642-29044-
2. https://doi.org/10.1007/978-3-642-29044-2 .

D. Amalfitano et al. Information and Software Technology 105 (2019) 95–116

116

https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/274787.274788
https://doi.org/10.1145/274787.274788
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.tcs.2005.07.014
http://www.sciencedirect.com/science/article/pii/S0304397505003993
https://doi.org/10.1016/j.jss.2016.12.017
https://doi.org/10.1016/j.jss.2016.12.017
https://doi.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2491411.2491450
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2950290.2983958
http://doi.acm.org/10.1145/2950290.2983958
https://doi.org/10.1145/2931037.2931053
http://doi.acm.org/10.1145/2931037.2931053
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
http://doi.acm.org/10.1145/2931037.2931054
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/2592798.2592813
https://doi.org/10.1145/2592798.2592813
https://doi.org/10.1109/INFCOM.2013.6566868
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0023
http://dl.acm.org/citation.cfm?id=2486788.2486799
https://doi.org/10.1145/2635868.2635896
http://doi.acm.org/10.1145/2635868.2635896
https://doi.org/10.1109/ICSE.2017.65
https://doi.org/10.1109/ICSE.2017.65
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1002/stvr.1654
https://doi.org/10.1002/stvr.1654
https://doi.org/10.1109/TAFFC.2016.2588488
https://doi.org/10.1109/ICSM.2007.4362651
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0032
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1016/j.infsof.2013.03.004
http://www.sciencedirect.com/science/article/pii/S0950584913000669
https://doi.org/10.1145/2950290.2983938
https://doi.org/10.1145/2950290.2983938
https://doi.org/10.1016/j.patcog.2011.01.017
http://www.sciencedirect.com/science/article/pii/S0031320311000458
https://doi.org/10.1016/j.inffus.2010.06.010
https://doi.org/10.1016/j.inffus.2010.06.010
http://www.sciencedirect.com/science/article/pii/S1566253510000734
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0039
https://doi.org/10.1016/j.infsof.2018.03.007
http://www.sciencedirect.com/science/article/pii/S0950584918300429
https://doi.org/10.1109/ICSE.2013.6606553
https://doi.org/10.1109/ICSE.2013.6606553
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30170-8/sbref0042
https://doi.org/10.1109/MSR.2015.18
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

	Combining Automated GUI Exploration of Android apps with Capture and Replay through Machine Learning
	Introduction
	Related work
	Automated GUI Exploration Techniques for Android apps
	AGETs that rely on predefined input event generation rules
	Configurable AGETs that exploit input event sequences predefined by the user
	AGETs exploiting manual user intervention

	Motivating example
	A Machine Learning-based approach for detecting Gate GUIs
	Dataset construction
	Keyword extraction
	GUI classifier training

	The proposed Hybrid GUI Exploration Technique
	The juGULAR platform
	App explorer component
	Gate GUI Detector component
	Gate GUI Unlocker component
	Bridge component

	Experiment
	Objects selection
	Subjects selection
	Metrics definition
	Effectiveness metrics
	Manual intervention cost metric

	Experimental procedure
	Experimental results
	Study conclusion
	Threats to validity
	Internal validity
	External validity

	Conclusions and future work
	Acknowledgments
	References

