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have proposed several input generation techniques for DL systems. While such techniques can expose failures, they do not explain
which features of the test inputs influenced the system’s (mis-) behaviour. DeepHyperion was the first test generator to overcome
this limitation by exploring the DL systems’ feature space at large. In this paper, we propose DeepHyperion-CS, a test generator for
DL systems which enhances DeepHyperion by promoting the inputs that contributed more to feature space exploration during the
previous search iterations. We performed an empirical study involving two different test subjects (i.e., a digit classifier and a lane-
keeping system for self-driving cars). Our results proved that the contribution-based guidance implemented within DeepHyperion-CS
outperforms state-of-the-art tools and significantly improves the efficiency and the effectiveness of DeepHyperion. DeepHyperion-CS
exposed significantly more misbehaviours for 5 out of 6 feature combinations and was up to 65% more efficient than DeepHyperion in
finding misbehaviour-inducing inputs and exploring the feature space. DeepHyperion-CS was useful for expanding the datasets used
to train the DL systems, populating up to 200% more feature map cells than the original training set.
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1 INTRODUCTION

Using Deep Learning (DL) has become widespread for modern software systems that must process complex inputs
and timely solve challenging tasks. For example, image classifiers [31, 62] can analyse images to diagnose diseases,
while intelligent driving agents use sensor information (e.g., from cameras and LiDARs) to drive vehicles [10]. Since DL
systems are applied also in safety-critical domains, ensuring their dependability is literally vital.
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Fig. 1. Feature map for a handwritten digit classifier. The

two axes quantify the discontinuity and boldness of digits.
Circled cells highlight misclassified inputs.

Fig. 2. Feature map for a lane keeping system. The two axes

quantify the complexity and smoothness of virtual roads.
Circled cells highlight inputs in which the driving agent

went astray.

Unlike traditional software, DL systems’ behaviour is not explicitly coded, being instead indirectly learned from
training examples [49]. This fundamental difference of DL systems from traditional software has profound implications
on how their quality is assessed.

In fact, DL systems’ source code analysis does not allow to predict their runtime behaviour. On the other hand, it
is difficult to understand to what extent DL systems can be trusted once deployed in the real world, as they could
process inputs that might be not sufficiently represented in the data used to train them. Most importantly, when such
underrepresented inputs are discovered by testing techniques, test results should be interpretable, as developers need to
understand which characteristics of the test inputs might have caused a system’s misbehaviour (e.g., which features of
an input image make the system wrongly classify it or which features of a driving scenario make the system drive the
autonomous vehicle off the road). In this manuscript, the term feature indicates high-level and human-interpretable
characteristics of test inputs, as done in Evolutionary Computation and Robotics [52]. In particular, we consider both
structural features (i.e., characteristics of the input itself) and behavioural features (i.e., characteristics of the output of
the DL system when exercised by the input).

Several test generation approaches have been proposed for automatically testing DL systems [58, 69]. Some of them
aim to pragmatically expose the highest number of misbehaviours [1, 22, 70]. Other approaches, instead, are guided by
ad-hoc test adequacy metrics, such as neuron coverage [26, 54, 64, 68] or surprise coverage [38], since traditional code
coverage metrics fail to measure whether DL systems have been adequately tested. These approaches are effective in
triggering multiple misbehaviours, but their output cannot be directly used to explain the behaviour of the DL system
under test. For instance, using neuron coverage reports, developers cannot easily understand why the DL system did
not handle correctly the misbehaviour-inducing inputs.

DeepHyperion [73] addresses this limitation by offering an interpretable characterisation of DL systems’ behaviours.
Manuscript submitted to ACM
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Its output consists of feature maps representing the generated inputs along with their performance (i.e., closeness
to exposing a misbehaviour), in the space of the relevant, domain- and problem-specific structural and behavioural
features (i.e., the feature space). As an example, for testing handwritten digit classifiers, DeepHyperion can use features
like the number of disconnected segments within each digit and the boldness of the stroke.

Feature maps are N-dimensional grids, in which each axis corresponds to a considered feature. These maps are
discretised so that each of their cells correspond to an interval of features’ values. Test inputs are automatically assigned
to a map cell, computed by measuring the metric that quantifies each feature. Figure 1 illustrates a 2-dimensional
feature map for a handwritten digit classifier, where the 𝑥-axis corresponds to the Discontinuity feature, while the
𝑦-axis corresponds to digits’ Boldness. Each feature’s value range is discretised into 4 intervals, resulting in a 4 × 4 map.

The resulting feature map highlights that the classifier under test cannot correctly handle thin strokes (i.e., the bottom
row of the feature map), as well as bold strokes with moderate discontinuity. Similarly, Figure 2 shows that the driving
agent under test is in trouble on roads with sharp curves (low values of Smoothness) regardless of their Complexity,
where road Complexity is measured as the number of times the road changes direction significantly. DeepHyperion [73]
comes with a systematic methodology to identify and quantify the feature dimensions in the domain of interest.

DeepHyperion explores the DL system’s feature space at large and triggers diverse misbehaviours by means of
a Multi-dimensional Archive of Phenotypic Elites (MAP-Elites), using an implementation of the illumination search
algorithm proposed by Mouret and Clune [52]. At each iteration of the search process, DeepHyperion randomly selects
one input from the feature map, mutates it and decides whether it is good enough to be placed on the map, i.e., it covers
unseen feature combinations or achieves a better performance with respect to similar, previously generated inputs.

In this work, we propose DeepHyperion-CS, a test generator for DL systems which enhances DeepHyperion by
promoting the inputs that contributed more to the feature map exploration during the search process. In particular,
DeepHyperion-CS features a novel selection operator which chooses with higher probability inputs that have a higher
Contribution Score (CS), i.e., those that in previous iterations generated new inputs which were successfully placed in
the feature map.

We evaluated DeepHyperion-CS in two different application domains: recognition of handwritten digits from the
MNIST (Modified National Institute of Standards and Technology) database [42], which is a classification problem, and
steering angle prediction for self-driving in the BeamNG driving simulator [7], which is a regression problem.

Our empirical study consists of: (1) an evaluation of DeepHyperion-CS’s effectiveness and efficiency; (2) a comparison
with state-of-the-art test generators, including AsFault [22]; and (3) white-box assessment of the intermediate test
inputs produced by test generators, in addition to the black-box assessment of the final outputs.

Our empirical results show that the contribution-based guidance implemented within DeepHyperion-CS outper-
forms the state of the art and significantly improves the efficiency and the effectiveness of DeepHyperion in finding
misbehaviour-inducing inputs and exploring the feature space. Moreover, we also showed that DeepHyperion-CS can
also help DL developers by characterising the deficiencies of the DL systems’ training dataset and by providing new
data to expand it.

In comparison to the original paper describing DeepHyperion [73], the main extensions that can be found in this
paper are:

• Contribution Score (CS), a novel metric to select the candidate inputs that are more likely to increase the
exploration of the feature space;
• DeepHyperion-CS, a tool that implements feature space exploration based on the guidance offered by CS;
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• A large empirical study which shows that DeepHyperion-CS’s contribution-based guidance outperforms Deep-
Hyperion and other state-of-the-art test generators in exploring the feature space and exposing misbehaviours.
The new empirical study considers both a black-box scenario, in which only the final outputs of the DL test
generation tools are available, and a white-box scenario, in which the inputs generated during the search process
are also available and can be projected onto the resulting feature map. Moreover, we introduced an additional
metric to compute the diversity of the generated inputs.
• On the self-driving car case study, an empirical comparison with an important baseline, AsFault [22];
• An empirical assessment of the efficiency of DeepHyperion-CS, which complements the assessment of its
effectiveness. Efficiency is measured by tracking performance indicators (i.e., mapped misbehaviours and filled
cells) over time and measuring the area under the curve (AUC).
• An experiment which shows the usefulness of DeepHyperion-CS for a practical DL development task, i.e.,
training set expansion.

We believe in the fundamental importance of open research and reproducible results [23], therefore we release the code
of DeepHyperion-CS, the dataset, and all the scripts to replicate the experimental evaluation at:

https://github.com/testingautomated-usi/deephyperion

2 DEFINITION OF THE FEATURES

A crucial element of our approach is the choice of the features that DeepHyperion-CS uses to drive test generation.
These features capture the dimensions along which the automatically generated test inputs or the system’s behaviours
may vary. They should represent meaningful properties of the system under test, defining both the search space of
DeepHyperion-CS and the feature space of interest to the users [52]. Additionally, features should be discriminative,
interpretable, and quantifiable to be useful for automated testing of DL systems. We distinguish two types of features,
the ones that characterise structural features of the test inputs, and the ones that characterise the output of the DL
systems under test, i.e. behavioural features.

In our previous work [73], we proposed a systematic methodology that developers can follow to identify possible
features in new domains of investigation with the aid of domain experts. We followed that procedure to identify the
features in two application domains, i.e., digit recognition and autonomous driving. Noticeably, we considered the
same application domains also in the experimental evaluation of DeepHyperion-CS. Therefore, to make this paper
self-contained, we briefly summarise this methodology and exemplify its application in the two considered domains.

As Figure 3 illustrates, feature selection consists of two macro-steps: (i) Open Coding [60], which aims to select the
features that better characterise the generated tests, and (ii) Metric Identification, which aims to design procedures
that quantify the selected features. The former enables developers to identify a set of features capturing independent
variables describing the tests, while the latter allows DeepHyperion-CS to position the tests in the feature map according
to the values of their features.

2.1 Open Coding

During Open Coding, human assessors manually analysed a set of existing inputs to select the relevant features in a
given domain. Assessors independently tagged the inputs assigned to them with a feature label. Each feature label is
composed of a feature name, paired with the corresponding feature value, chosen from a rating scale with five levels,
e.g., ranging from -2 to +2.
Manuscript submitted to ACM

https://github.com/testingautomated-usi/deephyperion


Efficient and Effective Feature Space Exploration for Testing Deep Learning Systems 5

Fig. 3. Feature Selection Methodology

Table 1. Feature selection and validation: output of the proposed methodology in the two reference application domains

Application Domain Case Study Feature Name Metric Name Agreement Correlation 𝑝-value

Digit Recognition MNIST Boldness Lum 100% 0.67 <0.002
Smoothness AvgAng 66% 0.05 0.241
Discontinuity Mov 100% 0.90 <0.002
Rotation Or 100%∗ 0.43 <0.002

Autonomous Driving BeamNG Smoothness Curv 95.8% -0.60 <0.002
Complexity TurCnt 87.5% 0.63 <0.002
Orientation DirCov 89.5% 0.66 <0.002
Passenger Comfort StdSA∗∗ – – –
Safety MLP∗∗ – – –

∗
Rotation was identified during the consensus meeting, after all the assessors agreed upon its meaning (i.e., Agreement= 100%).
∗∗
StdSA and MLP were identified in the study about quality of driving metrics for self-driving cars by Jahangirova et al. [35]

We set up a pilot study in which independent assessors analysed an initial set of samples and proposed potentially
relevant structural and behavioural features, while labelling these samples. During this study, each input was labelled
by multiple assessors in order to let them gain confidence in the labelling procedure.

This procedure is supported by a Web application that we developed, which ensures that unlabelled inputs are
equally distributed among the assessors, enables assessors to label inputs according to the existing features as well
as to define new features. Figure 4 shows a snapshot of this Web application for labelling road images. There are an
interactive image of the road with arrows indicating the sample positions of the car in the road 1 and a text box to
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Fig. 4. A view of the Web application used for labelling the inputs. The (interactive) left panel shows the aerial view of a virtual road

divided in road segments. In this panel, little triangles depict the field of view of an hypothetical vehicle driving in the middle of the

road, while additional meta-data about the road (e.g., total length) are given for reference. The right panel shows the form used by

the labellers to tag the input or define additional tags. Finally, the bottom panel shows the set of tags currently defined for virtual

roads. Note: a similar page (not shown in the figure) is used to label the images of handwritten digits.

assign the label 2 . As shown at the bottom of the figure, the Web application provides the list of already created
labels 3 , which can be reused by the assessors. This choice helps them to use consistent naming without introducing
substantial bias [33]. In the example in Figure 4, the assessor carefully inspected the road shape provided in the left
panel 1 and decided that it has a very sharp angle, a very large number of turns, and covers a moderately small range
of directions. Consequently, the assessor filled the text box in the right panel 2 by assigning a value in the range
[-2;+2] to each feature. Notably, the assessor reused the suggested existing tags 3 as they satisfactorily encoded the
identified features. Otherwise, the assessor could have introduced different tags, which would have been proposed to
all the assessors in the bottom panel. Based on our experience, this procedure took up to 1 minute for each image.

After the pilot study, the assessors performed a consensus meeting in which they agreed on the features’ definition
and the interpretation of the rating values collected during manual labelling. Consensus meetings are important for
assessors to find a common way of labelling the samples and, thus, to be consistent with each other. In fact, in these
meetings assessors discussed their interpretation of each feature and the reasons behind their decisions (e.g. assessors
agreed that the presence of sharp angles in a digit is the most relevant aspect for determining its smoothness). As a
result, the study produced a consistent set of features that assessors used to label the remaining samples (Final Labelling
step in Figure 3). In the final labelling, since assessors had reached a common understanding of the features and of their
possible values, they independently evaluated the remaining unlabelled samples, i.e., each sample was evaluated by a
single assessor.

In the digit recognition domain, three assessors took part in the pilot study and analysed 30 images from the MNIST
database. In particular, each assessor was assigned 20 images, so that each input was evaluated by two assessors.
Assessors identified four features that could potentially characterise images of digits: boldness, which indicates
the thickness of the handwriting’s strokes; smoothness, which indicates the absence of sharp angles in the digit;
discontinuity, which indicates the presence and the extent of disconnected segments forming the digit; rotation,
Manuscript submitted to ACM
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which indicates howmuch the digit is tilted with respect to the vertical axis. The first three features were proposed during
the pilot study, whereas the last one emerged during the consensus meeting. As reported in Table 1 (column Agreement),
the assessors fully agreed upon boldness, discontinuity, and rotation, while they only partially agreed on smoothness.
Agreement is measured as the proportion of labelled images on which the two assessments differ by at most one point
in the considered rating scale (we adopted 5 point rating scales for all features). After the consensus meeting, each
assessor labelled 200 images for a total of 600 images from MNIST.

In the autonomous driving domain, four assessors analysed 40 virtual roads. We assigned 20 roads to each assessor, so
that each road was evaluated by two assessors. The assessors identified three structural features that could potentially
characterise virtual (i.e., simulated) roads: smoothness, which indicates the presence of sharp turns; complexity,
which indicates how windy the road is; orientation, which indicates how many directions (e.g., N, S, W, E) the road
covers. In this case, the assessors agreed upon all the proposed features, but their agreement was slightly lower than for
digits. After the consensus meeting, each assessor labelled 100 roads for a total of 400 virtual roads.

Figures 1 and 2 show examples of handwritten digits and virtual roads organised in feature maps defined using some
of the identified features.

2.2 Metric Identification

We identified metrics that quantify the features, either by referring to standard metrics proposed in the literature or by
designing ad-hoc metrics. Then, we validated the proposed metrics by utilising correlation analysis [39], i.e., we kept
only the metrics that significantly correlate with the rating values collected during open coding.

In the digit recognition domain, we identified the following metrics to capture the relevant features of handwritten
digits: luminosity (Lum), which counts the number of light pixels whose values are above 127) of the image and
quantifies boldness; average angle (AvgAng) of the Bézier curves in the SVG representation of the digit, which
quantifies its smoothness; moves (Mov), which quantifies discontinuity by measuring the cumulative Euclidean
distance between consecutive digit segments’ end-points (to obtain the segments of a digit, we convert its bitmap to
SVG through vectorisation); and orientation (Or), which quantifies rotation measuring the angle between the digit’s
principal direction and the vertical axis, obtained by computing the angular coefficient of the linear regression of the
non-black pixels, i.e., pixels with value greater than 0. As columns Correlation and 𝑝-value of Table 1 show, luminosity,
moves, and orientation positively and significantly correlate with the corresponding features (𝑝-value < 0.05). Instead,
the correlation between AvgAng and smoothness is weak and not significant enough (𝑝-value > 0.05). Furthermore,
since the assessors did not fully agree upon the meaning of smoothness, we decided to discard this feature.

In the autonomous driving domain, we identified the following metrics to capture the structural features of virtual
roads which are computed on the points defining the roads’ centre lines:maximumcurvature (Curv), which quantifies
road smoothness as the inverse of its turns’ radius; turn count (TurCnt), which counts how many times a road
significantly changes direction (i.e., by more than 5 degrees) and quantifies its complexity; and direction coverage

(DirCov), which quantifies orientation by counting the angular sectors covered by the road.
In this work, we slightly modified the metric to measure the roads’ smoothness in order to improve its expressiveness

with regards to sharper turns. In fact, in our previous work we used the minimum turns’ radius (i.e., MinRadius), rather
than its inverse. We deemed the MinRadius metric as sub-optimal since it showed a wide range of values for smooth
roads, which are usually less problematic for driving agents.

As reported in Table 1, all these metrics significantly correlate with the features; hence, we accepted them all.
However, since these metrics characterise only the inputs’ structural features, we considered additional metrics to
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characterise the quality of self-driving, i.e., metrics to quantify the behavioural features. In particular, we selected
the following two metrics from the study by Jahangirova et al. [35]: standard deviation of steering angle (StdSA),
which measures the activity of the driving agent on the steering wheel and can be used to quantify passenger comfort;
and the car’s mean lateral position (MLP), which measures how close the driving agent drives from to the lane
margins and can be used to measure safety [22, 59? ].

3 GUIDING ILLUMINATION SEARCHWITH CONTRIBUTION SCORE

DeepHyperion-CS aims to extensively explore the feature space of a DL system to find inputs with diverse characteristics
that induce the system to deviate from the expected behaviour. In our previous work [73], we demonstrated that this goal
can be achieved with Multi-dimensional Archive of Phenotypic Elites (MAP-Elites), an Illumination Search algorithm
proposed by Mouret and Clune [52].

Given N dimensions of variation of interest, which define the feature space (i.e., the feature map to explore), MAP-
Elites looks for test inputs that expose misbehaviours in the system under test at each point in the space defined by
those dimensions (i.e., the map’s cells). Its goal is to fill the feature map with the fittest individuals, i.e., inputs that
expose or are close to exposing misbehaviours.

MAP-Elites needs a domain- and problem-specific fitness function to measure the degree of misbehaviour exhibited by
the system when executed with a given candidate solution as input. For example, when testing Deep Neural Networks
(DNNs) that recognise handwritten digits in greyscale images, two dimensions of interest may be the boldness and
discontinuity of the handwriting stroke (see section 2). In this case, DeepHyperion-CS uses the misclassification
distance as fitness function [12, 18, 59] to generate greyscale images containing digits written using strokes with
different boldness and discontinuity (see Figure 1). The misclassification distance is computed as the difference between
the activation value of the neuron associated with the correct label and the highest incorrect activation from the DNN’s
softmax layer output (hence, it becomes negative as a misclassification occurs).

The original MAP-Elites algorithm uses uniform random individual selection to perform the search, i.e., at each
iteration, it generates a new input by modifying an individual randomly chosen among the ones already occupying
some map cells. The motivation behind this choice is that random selection avoids biasing the search and possibly
achieving suboptimal solutions [52]. For instance, selecting the fittest individual at each iteration may drastically reduce
the population’s diversity and lead to premature convergence of the search.

However, smarter selection mechanisms usually improve search-based algorithms compared to the random baseline,
e.g. survival of the fittest [21] and promotion of the most diverse individuals [44, 50]. Therefore, in this work we
integrate a novel selection operator into MAP-Elites, specifically designed to promote individuals that contribute more
to the map exploration. The ability of an individual to generate many and diverse new inputs is captured by our novel
metric, named contribution score (CS) (see section 3.5 for a detailed description). Our assumption is that an individual
contributes to the search when it generates mutants that occupy previously empty cells or are fitter than existing
individuals.

If an individual contributes to the search more often, it could be more useful to generate better mutants also in next
iterations. On the other hand, if an individual does not contribute to the search for several iterations, it is unlikely that
it will generate better mutants later; in this case, we progressively reduce that individual’s CS score in order to give
it a lower priority during the selection. Consequently, selecting individuals with higher CS can lead to fill more cells
of the feature map, possibly in fewer iterations, than uniform random selection. Moreover, exploring more feature
combinations may also lead to exposing more misbehaviours.
Manuscript submitted to ACM
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Algorithm 1: DeepHyperion-CS’s Illumination Search
Input :𝐵: execution budget

featurelist: list of features
seedsize: seed pool size
popsize: population size
rankselectionprob: rank selection probability

rankbias: rank bias
Output :𝑀 : feature map

1 map M ← InitializeMap(featurelist);
2 seeds S← GenerateSeeds(seedsize);
3 foreach 𝑠 ∈ S do
4 Evaluate(s);
5 end

6 population P ← InitialisePopulation(𝑆 , popsize);
7 foreach ind ∈ P do

8 M ← UpdateMap(ind) ;
9 end

10 while elapsedBudget < 𝐵 do

11 ind ← CS-RankSelection(M, rankselectionprob, rankbias);

12 ind𝜇 ←Mutate(ind);
13 Evaluate(ind𝜇 );
14 M ← UpdateMap(ind𝜇 );

15 ind ← UpdateCS(M);

16 end

17 return (M)

Algorithm 1 outlines the high-level steps of the Illumination Search approach implemented by DeepHyperion-CS
and highlights the lines that differ from DeepHyperion. The algorithm starts by filling an empty N-dimensional and
discretised feature map𝑀 (line 1) with an initial population 𝑃 to be evolved (line 6), where N is the number of features
in the featurelist provided as input. The initial population is drawn from a pool 𝑆 of valid candidate inputs, called seeds,
that are evaluated using the EVALUATE function which computes the fitness function (i.e. closeness to misbehaviour)
and the features’ values of the considered individual (lines 3–5). The cost of the input evaluation is domain-dependent
and spans from a simple model prediction, e.g., for handwritten digits, to performing expensive simulations, e.g., for
lane keeping. On the basis of the computed features, the candidate inputs are placed into𝑀 following the update map
rule (lines 7–9), i.e., each map cell can be occupied only by the fittest individual with feature values corresponding to
that cell. After creating 𝑃 , the algorithm performs the main evolutionary loop (lines 10-15) until a termination condition
on the execution budget is met. At each loop iteration, an individual ind is chosen from the current map using the
CS-based rank selection operator (line 11). The selected individual is mutated to generate a new input ind𝜇 (line 12) and,
then, its features and fitness are evaluated (line 13). The map is updated with ind𝜇 (line 14): if it has a higher fitness
value than the individual in the map cell it occupies, it replaces the existing entry in the map (this is done also if the
map entry is currently empty). Finally, the CS of the parent individual ind is updated according to whether its mutant

Manuscript submitted to ACM



10 Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella

ind𝜇 contributed to the exploration or not (line 15). In the next sections, we detail the key aspects of DeepHyperion-CS
and describe how we applied it to the chosen application domains.

3.1 Model-Based Input Representation

DeepHyperion-CS is a model-based test input generation technique [65]: it generates complex inputs (e.g., greyscale
images) bymanipulating amodel of the input, instead of directly modifying the raw input data (e.g., pixels). Consequently,
DeepHyperion-CS requires a generative model of the input data processed in its application domain. Generative input
models are largely domain-specific and are commonly employed in several domains, including safety-critical ones [41].

A possible alternative to model-based manipulation could be to directly modify the raw input data (e.g., pixels for
MNIST) as done in traditional adversarial Machine Learning (ML). Adversarial ML techniques focus on applying the
minimal changes that can trigger a misbehaviour and are guaranteed to achieve this goal [9]. However, they are not
focused on generating inputs with different structural features and, thus, covering the feature map. Another alternative
for input generation are generative ML approaches that approximate the input distribution, such as Variational Auto-
Encoders (VAEs) [37] and Generative Adversarial Networks (GANs) [18]. VAEs and GANs are very useful when a model
of the inputs is not available, e.g., real-world images from ImageNet. However, generative ML based approaches rely on
the quality of both a representative training set and trained generative ML models, which might be hard to achieve for
complex problems.

We evaluated DeepHyperion-CS on two reference problems, handwritten digit recognition in the image classification
domain and lane-keeping in the automotive domain.

For the handwritten digits recognition problem, we refer to the image format adopted by the MNIST database [42]
that consists of 70 000 greyscale 28 × 28 images of handwritten digits. DeepHyperion-CS abstracts each digit as a
sequence of (start, end, and control) points that define Bézier segments by utilising the Potrace algorithm [61] and
stores them as Scalable Vector Graphics (SVG)1 files, as shown in Figure 5. In particular, Potrace performs a sequence of
operations, including binarisation, despeckling and smoothing, which draw a smooth contour made of Bezier segments
around the considered image. We used Potrace since it represents the state of the art in vector model extraction from
images, (see, e.g., the Inkscape tool2), and can be easily integrated into Python code via the pypotrace3 API.

For the lane-keeping problem, we refer to the simulated driving scenarios defined by state-of-art approaches for
testing lane-keeping systems [22, 53, 59] that consist of flat, two-lane, two-way, asphalt roads surrounded by green
grass on which the ego-car (i.e., the vehicle under the test) has to drive on the right lane. The environment is set to
a clear day without fog. DeepHyperion-CS abstracts roads as sequences of control points in a bi-dimensional space.
DeepHyperion-CS interpolates the control points using Catmull-Rom cubic splines [13] to transform them into virtual
roads to be rendered in the simulator. Figure 6 shows the control points of the centre line spline as larger red dots and
the interpolated points that define the road as smaller grey dots.

3.2 Fitness Function

Intuitively, a suitable fitness function for testing DL systems should quantify how close the DL system is to exhibit a
misbehaviour [22, 30, 59]. In the following, we describe the two fitness functions we designed to address the handwritten
digit recognition and lane-keeping problems, respectively.

1https://www.w3.org/Graphics/SVG/
2https://wiki.inkscape.org/wiki/Potrace
3https://github.com/flupke/pypotrace
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Fig. 5. Digit input representation and mutation. (a) original

input; (b) original SVG model after vectorization; (c) SVG

model mutated by moving a control point; (d) mutated input.

Fig. 6. Road input representation and mutation. (a) original

input; (b) original model; (c) model mutated by moving a

control point; (d) mutated input.

For the handwritten digit recognition problem, we rely on the fact that the DNN under test recognises the digits in
the input image by selecting the class with the highest activation level in its softmax output layer [25]. Therefore, by
computing the difference between the activation level of the neuron associated with the correct class and the maximum
activation level associatedwith the other, incorrect classes, we can effectivelymeasure whether the predictionwas correct
(positive fitness value) or wrong (negative fitness value). More importantly, using this fitness function, DeepHyperion-
CS can measure how close an input is to cause a misbehaviour and can expose misbehaviours by minimising the fitness
value.

For the lane-keeping problem, we adopt a fitness function that scores higher tests causing the ego-car to drive closer
to, or even across, the lane’s margins. Specifically, DeepHyperion-CS calculates the fitness of a test as min(𝑤/2 − 𝑑),
where𝑤 is the width of the lane the ego-car travels on, and 𝑑 is the distance of the ego-car from the lane centre. The
position of the car is approximated by its centre of mass. The fitness function returns its maximum value𝑤/2 when the
car is at the lane centre. DeepHyperion-CS aims to minimise this fitness function causing the ego-car to drive over the
lane’s margins (negative fitness values).

Since it is more important to find all unique misbehaviours that happen in different conditions, rather than finding test
inputs that cause a “large amount” of misbehaviour (large negative value of the fitness function), DeepHyperion-CS aims
at generating as many diverse misbehaviour-inducing tests as possible, while the fitness function is capped to a small
negative value (i.e., −0.1) independently of the misbehaviour, thus avoiding that DeepHyperion-CS ends up replacing
individuals that caused already discovered misbehaviours with individuals causing more extreme misbehaviours that
happen in similar or the same conditions. This strategy has the advantage of making it hard for the fittest individuals to
dominate the selection, which might lead to premature convergence [5].

3.3 Feature Map

A feature map represents the feature space defined by N dimensions of variation (i.e., the features) that are relevant for
characterising the tests generated by DeepHyperion-CS.

DeepHyperion-CS characterises each individual by placing it into the feature map𝑀 using the following mapping
function:

𝑥𝑖 = ⌊𝛼𝑖 · ind .𝑓𝑖 ⌋ (1)

where ind .𝑓𝑖 ,∀𝑖 ∈ [1 : 𝑁 ] refers to an individual’s feature values. According to Equation 1, DeepHyperion-CS computes
the 𝑖-th index of a cell (i.e., the integer 𝑥𝑖 that defines its coordinate along the 𝑖-th dimension) by scaling the feature
value ind .𝑓𝑖 using the scaling factors 𝛼𝑖 .
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It should be noticed that if a feature 𝑓𝑖 can have negative values, the resulting index 𝑥𝑖 becomes also negative.
Correspondingly, the feature map will span between negative and positive integers (one way to achieve this in the
implementation is to use the index 𝑥𝑖 as a hash key and to display a grid spanning along all keys). DeepHyperion-CS
uses 𝛼 to control the map’s granularity based on the expected range of each feature and to transform continuous values
into the map coordinate system, which is based on integers. The granularity of the feature map (i.e., the number of cells
along each dimension) is decided by the user of our approach when setting the scaling factor 𝛼𝑖 . Specifically, 𝛼𝑖 can be
empirically computed as the ratio between the desired granularity, i.e., the desired number of cells, and the expected
range of the corresponding feature 𝑓𝑖 . The choice of the map granularity affects its discriminative power, since a too low
granularity might be insufficient to characterize the misbehaviours and to distinguish them from correct behaviours.
However, in our experience any reasonably high choice (as a rule of thumb, more than 25 cells) is enough to ensure
good discrimination.

For instance, if the 𝑖-th feature’s values are expected to range between 0.0 and 2.0, and the desired granularity is
100, a suitable value of 𝛼𝑖 would be 50. The 𝛼 values remain constant during the search, while the size of the map
𝑀 dynamically increases as DeepHyperion-CS generates individuals with feature values outside the current map
boundaries. Initially,𝑀 contains no cells; then, as soon as DeepHyperion-CS generates new tests with features that
map to indexes outside the current range of values, it grows𝑀 to accommodate the newly discovered individuals and
adjusts the range of values along the extended dimensions. For instance, if the first mapped individual in a hypothetical
bi-dimensional map has indexes (𝑥1, 𝑥2) = (2, 3), the initial empty map 𝑀 would be updated to have one cell in
each direction at position (2, 3) and ranges ( [2 : 2], [3 : 3]). If later DeepHyperion-CS maps another individual to
(𝑥1, 𝑥2) = (5, 1),𝑀 grows along its first dimension to the range [2 : 5] and to [1 : 3] along the second dimension. At
this point, the feature map contains 12 cells, 2 of which are filled, i.e., they contain an individual.

We could have considered dynamic scaling factors 𝛼𝑖 with maps of fixed size, as they could be beneficial for features
with previously unknown ranges. However, dynamic scaling would require to recompute the best solutions within each
cell at each rescaling, because the local competition triggered by the search algorithm depends on which individuals are
mapped to each cell. In turn, this might cause instabilities of the algorithm, because convergence toward the final map
is driven by the winners of the local competitions, which could change completely each time a new rescaling is applied.
Moreover, the memory requirements of the algorithm would grow, as all the generated inputs must be kept in memory
to repeat the local competition process each time a new scale is adopted. Hence, we decided to rely on a preliminary
estimation of the feature ranges to define a set of fixed scaling factors 𝛼𝑖 .

Since the size of the final dynamically discovered map may be different between various runs of the algorithm, which
may hinder visual inspection of the results, DeepHyperion-CS allows testers to define the granularity of the final map
produced by the algorithm. Therefore, it obtains the final map by rescaling the search results as follows:

𝑥 ′𝑖 =
⌊
GS𝑖 ·

ind .𝑓𝑖 −min𝑖

max𝑖 −min𝑖

⌋
(2)

where GS𝑖 is the desired grid size of the final map, andmin𝑖 andmax𝑖 are the minimum and maximum values empirically
observed for the 𝑖-th feature. Rescaling the feature maps eases the comparison of maps produced by DeepHyperion-
CS and other test generators across various runs, when results that have different ranges. Therefore, we rely on map
rescaling in the experimental evaluation.

In particular, we rescale the maps so that they have the same size and features’ ranges across all runs of all test
generators, hence avoiding any misalignment between maps.
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Fig. 7. Misbehaviour probability maps: darker cells correspond to feature combination values that are more likely to induce misbe-

haviours, dark borders highlight cells with high confidence of producing a misbehaviour.

The generation of multiple inputs that belong to the same cell, e.g., through multiple DeepHyperion’s runs, allows the
identification of feature map regions where the probability of observing misbehaviours is higher. In fact, a combination
of feature values that often corresponds to a misbehaviour may suggest that such feature values are very likely to induce
a misbehaviour. In this way, DeepHyperion provides developers with a powerful tool to understand the causes of
misbehaviours. Therefore, we synthesise the information collected by DeepHyperion across multiple runs (i.e., all the
generated inputs and the corresponding outputs) inmisbehaviour probability maps, that report the Average Misbehaviour
Probability (AMP) associated with each cell. We compute these maps by (1) measuring, within each cell, the ratio of the
number of misbehaviour-inducing inputs to the total number of inputs generated by DeepHyperion during each run,
and then (2) averaging the resulting values per cell across all the tool’s runs. Since DeepHyperion may generate only a
small number of inputs in some cells, the corresponding AMP values might be affected by a large error. Hence, we also
compute the confidence interval of AMP. In particular, we use Wilson’s confidence interval estimator for binomial
random variables, which indicates whether the misbehaviour probability estimated for a particular combination of
feature values has a low or high error range. We consider a combination of feature values to produce misbehaviours
with high confidence if its AMP value is greater than 0.8 and the lower bound of its confidence interval is above 0.65.
As shown in Figure 7, misbehaviour probability maps contain blank cells corresponding to feature combination values
that have never been observed, while the other cells are shaded proportionally to their AMP values. Combinations
producing misbehaviours with high confidence have thick borders.

3.4 Initial Population

DeepHyperion-CS generates an initial population of size popsize by choosing inputs from a larger pool of seeds of
size seedsize, consisting of valid inputs for the system under test. For the handwritten digit recognition problem, these
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seeds are existing images randomly drawn from the MNIST database and converted to SVG, while for the lane-keeping
problem, seeds are valid roads that are generated randomly.

Generation of DeepHyperion-CS’s initial population aims to create a set of diverse individuals from the feature
space. Therefore, after evaluating the seed fitness and computing the seed position on the map based on the feature
values, DeepHyperion-CS greedily selects individuals from the seed pool so as to maximise their pairwise Manhattan
distance (sum of the absolute differences of the map coordinates) [40].

3.5 Contribution Score-Based Rank Selection

As shown in Algorithm 1, each DeepHyperion-CS’s evolutionary iteration starts by selecting an existing individual to
be mutated from the non-empty cells of the feature map. To select such individual, DeepHyperion-CS can use either
a random strategy (RandomSelection) or our novel strategy based on the contribution score (CS-RankSelection).
The rank selection probability parameter rankselectionprob controls the frequency of usage of each selection strat-
egy. Specifically, increasing values of rankselectionprob result in adopting CS-RankSelection more frequently than
RandomSelection.

RandomSelection is a standard selection strategy, in which an individual is uniformly sampled among the ones
already placed in the feature map.

CS-RankSelection implements a rank selection scheme which selects individuals with a probability proportional to
their rank, such that high-ranked individuals are selected with higher probability than low-ranked ones.

Individuals are ranked by CS-RankSelection according to their Contribution Score (CS), which represents the
individual’s contribution to exploration. An individual has contributed to exploration if it has generated mutants which
filled previously empty cells or which replaced existing individuals with better ones. In detail,𝐶𝑆 is computed as follows:

𝐶𝑆 (𝑥) =
{

𝐶𝐶 (𝑥)
𝑆𝐶 (𝑥) if 𝑆𝐶 (𝑥) > 0
1 otherwise

(3)

where 𝐶𝐶 (𝑥), the Contribution Count, indicates the number of times mutants of individual 𝑥 have been successfully
placed in the map, while 𝑆𝐶 (𝑥), the Selection Count, indicates the number of times the individual has been selected
during the search. According to its definition, 𝐶𝑆 is always bounded between (0, 1]. Each individual’s 𝐶𝑆 is initially
set to 1, which means that (i) all the individuals are selected with equal probability before collecting any observation
(unbiased initial selection); and (ii) individuals who have never been selected are more likely to be selected than others
(promoted exploration).

During the search,𝐶𝑆 values are updated to reflect each individual’s actual contribution. For instance, if an individual
𝑥1 with 𝐶𝐶 (𝑥1) = 1 and 𝑆𝐶 (𝑥1) = 1 is selected but its mutant is not placed on the map (i.e., the existing individual
already placed into its same cell has higher fitness), 𝑆𝐶 (𝑥1) increments but𝐶𝐶 (𝑥1) remains the same. As a result,𝐶𝑆 (𝑥1)
drops from a solid 1.0 to a less considerable value of 0.5, halving the chances to select 𝑥1 in the following iterations.
Interestingly, the contribution score of an individual does not always monotonically decrease during the search since
every time 𝑆𝐶 (𝑥) increases, the corresponding value of𝐶𝐶 (𝑥) may or may not increase. The initial value of𝐶𝑆 (𝑥) is 1.0
to promote individuals that have not been yet selected. Regime values for 𝑆𝐶 (𝑥) are usually big, making the difference
between contiguous values of 𝐶𝑆 (𝑥) small, i.e., 𝐶𝑆 is overall smoothly changing. However, there is an initial, transient
phase where by design𝐶𝑆 (𝑥) is less smooth, e.g. jumping from 1.0 to CS = 0.0 (non contributing individual) and then to
CS = 0.5 (contributing individual), to quickly lower the rank of individuals that proved not to contribute to the search.
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To perform rank selection of individuals, we use the linear ranking function proposed by Whitley [67]. This approach
to rank individuals is widely used in search-based software testing since it addresses the problem of maintaining a
constant selective pressure of genetic algorithms throughout the search [6, 20, 24, 28, 29, 51]. In accordance with this
technique, DeepHyperion-CS sorts the individuals in ascending order based on their CS value. Then, it selects from the
ordered list the individual corresponding to the index computed with the following formula:

𝑖𝑛𝑑𝑒𝑥 = 𝑠𝑖𝑧𝑒 (𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠) ×

(√
𝑟𝑎𝑛𝑘𝑏𝑖𝑎𝑠2 − 4 × (𝑟𝑎𝑛𝑘𝑏𝑖𝑎𝑠 − 1) × 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1)

)
2.0 × (𝑟𝑎𝑛𝑘𝑏𝑖𝑎𝑠 − 1) (4)

where function size returns the length of a list and the function 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) returns a random floating point number
between 0 and 1. The rankbias parameter ranges between 1.0 and 2.0 and influences the algorithm’s behaviour by
biasing the selection towards individuals with higher ranks (i.e., rankbias values close to 2.0) or lower ranks (i.e.,
rankbias values close to 1.0) [67]. n the former case, the selection operator does not always select the best individual,
which helps to avoid local optima.

In summary, by adopting our rank selection operator based on contribution score, DeepHyperion-CS can bias
the search towards solutions with high contribution scores, hence exploring the feature space at large, “illuminating”
the search space as much as possible. Additionally, by exposing parameters such as rankselectionprob and rankbias,
DeepHyperion-CS enables testers to control the selection pressure and the level of bias imposed by the rank selection
on the overall search process.

3.6 Model-Based Mutation Operators

After selecting an individual, DeepHyperion-CS mutates it to generate a new input. Since DeepHyperion-CS is a model-
based test generator, its mutation operators manipulate an input model rather than the input itself. DeepHyperion-CS
uses mutation operators that apply small perturbations to the input models within a customisable range.

For the handwritten digit recognition problem, DeepHyperion-CS manipulates the SVG image model’s points to
mutate the corresponding digit shape while preserving realism [59]. Then it applies a rasterisation operation to obtain
the input in the MNIST database format4 (see Figure 5). For the lane-keeping problem, DeepHyperion-CS mutates the
road geometry by applying a displacement to the coordinates of the model’s control points (see Figure 6).

Despite the small perturbations applied by DeepHyperion-CS, the generated mutants may not be different from
their parents or even valid once concretised into actual test inputs. Therefore, DeepHyperion-CS verifies that the
mutants are different from their parents and comply with the constraints of the input domain before evaluating them.
DeepHyperion-CS keeps mutating the same parent individual until a valid mutant is found.

For the handwritten digit recognition problem, DeepHyperion-CS (i) computes the Euclidean distance between the
mutant and its parent, which must be greater than 0; (ii) computes the Euclidean distance between the mutant and the
starting seed, which must be greater than 0 and lower than 2.

For the lane-keeping problem, it checks that mutated roads (i) do not have control nodes identical to the parent’s
control nodes; (ii) are entirely contained within a squared bounding box of fixed size (i.e., the driving simulator’s map
boundaries); and (iii) do not self-intersect.

4DeepHyperion-CS utilises the open-source graphic libraries LibRsvg and Cairo for rasterising SVG images to the MNIST format.
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4 EXPERIMENTAL EVALUATION

4.1 ResearchQuestions

Our evaluation aims at understanding the effectiveness of the Contribution Score in guiding DeepHyperion toward
feature map generation. Hence, we seek answers to the following research questions:

RQ1. Does the guidance provided by Contribution Score improve DeepHyperion’s effectiveness?

Effective test generators produce tests that trigger as many diverse misbehaviours as possible, i.e., they expose
multiple problems but do not expose repeatedly the same problems. Otherwise, they waste computational resources in
generating tests that do not provide any new insight into the quality of the DL system under test.

Metrics: We assess effectiveness by counting the Mapped Misbehaviours (MM), i.e., the cells of the feature map that
contain misbehaviour-inducing inputs. To measure the diversity of the misbehaviour-inducing inputs, we compute
the Misbehaviour Sparseness. In particular, we compute the average Manhattan distance between cells containing
misbehaviours and the average maximum Manhattan distance between cells containing misbehaviours. We consider
two slightly different sparseness metrics to take into account outliers and denser map regions:

Misbehaviour Sparseness (Avg. Max) =
∑
𝑖∈𝑀𝑀 max𝑗 ∈𝑀𝑀 dist(𝑖, 𝑗)

|𝑀𝑀 | (5)

Misbehaviour Sparseness (Avg.) =
∑
𝑖, 𝑗 ∈𝑀𝑀,𝑖≠𝑗 dist(𝑖, 𝑗)
|𝑀𝑀 | ( |𝑀𝑀 | − 1) (6)

RQ2. Does the guidance provided by Contribution Score allow DeepHyperion-CS to explore the feature space more

extensively than DeepHyperion?

Thorough testing should exercise many behaviours of the systems under test. This can be achieved by extensively
exploring the feature space.

Metrics: We measure the thoroughness of exploration by counting the Filled Cells (FC) in the map, i.e., the cells of
the feature map that contain at least one input. We quantify how broadly those filled cells spread over the feature space
by measuring their sparseness, i.e., the Coverage Sparseness. Similarly to Misbehaviour Sparseness, we consider the
following two sparseness metrics:

Coverage Sparseness (Avg. Max) =
∑
𝑖∈𝐹𝐶 max𝑗 ∈𝐹𝐶 dist(𝑖, 𝑗)

|𝐹𝐶 | (7)

Coverage Sparseness (Avg.) =
∑
𝑖, 𝑗 ∈𝐹𝐶,𝑖≠𝑗 dist(𝑖, 𝑗)
|𝐹𝐶 | ( |𝐹𝐶 | − 1) (8)

RQ3. How efficient is DeepHyperion-CS in exploring the feature space and generating test inputs that expose diverse

misbehaviours?

Testing DL systems can be costly, especially when it is conducted at the system level, as happens, e.g., with simulation-
based testing of self-driving cars. Therefore, we evaluate how quickly test generators fulfill the testing objectives of
triggering misbehaviours and extensively exploring the feature space.

Metrics:We assess test generation efficiency by measuring the Area Under the Curve (AUC) of Mapped Misbehaviours
and Filled Cells. AUC is a standard performance metric, and higher values of AUC indicate more efficient test generators.
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Fig. 8. Example feature maps to explain training set expansion: (a) training map; (b) DeepHyperion-CS map

The previous research questions aim to characterise DeepHyperion-CS as a test generator. The ability of DeepHyperion-
CS to explore the feature space at large can be helpful to DL developers in several other tasks. For instance, training set
expansion: the performance of DL systems is limited by the size and quality of the datasets used to train them [33].
DeepHyperion-CS can be used for characterising and expanding those datasets, which could lead to an improvement
of the DL systems’ quality. Consequently, we investigate the following additional research question:

RQ4. Can DeepHyperion-CS be used to expand the training data? Can it find misbehaving inputs also in cells that were

already occupied by non-misbehaving training data?

The knowledge acquired by a DL system is limited by the diversity of the data that have been used to train it.
We evaluate how DeepHyperion-CS can expand such knowledge beyond the training set, by identifying feature
combinations that are not covered by the existing training set. New input data generated for such initially uncovered
feature map cells can expand the training set and increase the generalisation capability of the system.

Such initially uncovered cells are particularly interesting when they contain an input triggering a misbehaviour. On
the other hand, DeepHyperion-CS’s fitness-guided local competition can also generate misbehaviour-inducing inputs
for feature combinations that were not associated to any misbehaviour in the training set. Therefore, we also evaluate
how many unknown misbehaviours are triggered by DeepHyperion-CS in cells that are either covered or uncovered by
the training set.

Metrics: We answer this question by comparing the feature maps produced from the training set with those
generated by DeepHyperion-CS. We measure the size of Filled Cell Expansion (FCE), computed as the cells filled by
DeepHyperion-CS that were uncovered in the training set:

FCE = |𝐹𝐶𝐷𝐻 \ 𝐹𝐶𝑡𝑠 | (9)

where 𝐹𝐶𝐷𝐻 is the set of cells filled by DeepHyperion-CS, whereas 𝐹𝐶𝑡𝑠 is the set of cells filled with training set data.
In Figure 8, we show an example of a map corresponding to the training set (a) and a map produced by DeepHyperion-

CS (b). In this example, |FCE| is 2, since DeepHyperion-CS covers two new cells, at coordinates ⟨1, 2⟩ and ⟨1, 3⟩, which
are not covered in the training set map.
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To measure howDeepHyperion-CS is able to generate newmisbehaviours, we defineMapped Misbehaviour Expansion

(MME) as:

𝑀𝑀𝐸 = |𝑀𝑀𝐷𝐻 \𝑀𝑀𝑡𝑠 | (10)

where𝑀𝑀𝐷𝐻 is the set of cells containing misbehaviours in maps generated by DeepHyperion-CS, whereas𝑀𝑀𝑡𝑠 is
the set of cells containing misbehaviours in the training set. In Figure 8, |MME| is 2 because two misbehaviours are new:
those at coordinates ⟨1, 2⟩ and ⟨2, 2⟩.
𝑀𝑀𝐸 consists of two distinct sets: (1) the misbehaviours generated by DeepHyperion-CS in cells not covered by

the training set (𝑀𝑀𝐸𝑢𝑛𝑐𝑜𝑣 ); and, (2) the misbehaviours generated by DeepHyperion-CS in cells that are covered by
training set data, but only by correctly behaving inputs (𝑀𝑀𝐸𝑐𝑜𝑣 ). We define these sets as follows:

𝑀𝑀𝐸𝑢𝑛𝑐𝑜𝑣 = 𝑀𝑀𝐸 \ 𝐹𝐶𝑡𝑠 (11)

𝑀𝑀𝐸𝑐𝑜𝑣 = 𝑀𝑀𝐸 ∩ 𝐹𝐶𝑡𝑠 (12)

Considering the maps in Figure 8, |𝑀𝑀𝐸𝑢𝑛𝑐𝑜𝑣 | = 1 since the cell ⟨1, 2⟩ is empty in the leftmost map and contains a
misbehaviour in DeepHyperion-CS’s map. |𝑀𝑀𝐸𝑐𝑜𝑣 | = 1 since the cell ⟨2, 2⟩ is covered in the training set map and
contains a misbehaviour in the rightmost map. The definitions of 𝑀𝑀𝐸𝑢𝑛𝑐𝑜𝑣 and 𝑀𝑀𝐸𝑐𝑜𝑣 are oblivious of the cells
already containing a misbehaviour in the training set, since such cells represent known issues that were identified
before the generation of new test inputs. Therefore, cells at coordinates ⟨1, 1⟩ and ⟨1, 3⟩ do not contribute to 𝑀𝑀𝐸,
since they contain known misbehaviours, already presented in the training set.

4.2 Subject Systems

We evaluate DeepHyperion-CS on MNIST and BeamNG, two different DL systems widely used in the literature to
assess testing techniques for DL systems [58, 69].

The MNIST system recognises handwritten digits from the MNIST dataset [42]; hence, it performs a classification task.
Its DNN predicts which digit is represented in a greyscale image. In particular, we consider the popular convolutional
DNN architecture provided by Keras [14]. We trained this DNN on the MNIST training set using its default configuration,
i.e., 12 epochs, batches of size 128, and a learning rate equal to 1.0. Our digit classifier achieved 99.8% classification
accuracy on the MNIST testing set.

The BeamNG system is a simulation-based self-driving car. It implements an end-to-end, vision-based driving agent
that can follow the lane in a road. BeamNG includes a DL-based Lane Keeping Assist System (LKAS), i.e., a DNN able to
predict the steering angle of the car given the image of its onboard cameras; hence, it solves a regression problem. For
this task, we adopted the widely known DAVE-2 architecture designed by Bojarski et al. at NVIDIA [10].

The whole DL system is tested in the BeamNG.research driving simulator [7], a state-of-the-art simulator widely
used in research [53]. We trained the model for 4 600 epochs, with batches of size 128 and a learning rate equal to 0.001,
achieving a mean squared error (MSE) of 4.31𝑒−5 on the test set. Our training set consists of images captured by the
on-board camera, labelled with the steering angles provided by the simulator’s autopilot while driving on virtual roads
up to 25𝐾𝑚/ℎ. To avoid biasing the results, we collected training images by letting the autopilot drive on the same 20
seed roads used by each of the input generators considered in the experimental evaluation.
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Table 2. DeepHyperion-CS Configurations

Parameter Test Subject

MNIST BeamNG

seed pool size 900 80
population size 800 48
time budget (s) 3600 36000
mutation range lower bound 0.01 1
mutation range upper bound 0.6 6
ranked selection probability 0.5 0.5
rank bias 1.5 1.5
feature combinations (Mov, Or) (MLP, StdSA)

(Or, Lum) (MLP, TurnCnt)
(Lum, Mov) (StdSA, Curv)

4.3 Experimental Procedure

We addressed our research questions by running DeepHyperion-CS and other state-of-the-art test input generators
against the two considered test subjects. At the end of the runs, we used the results generated by each tool to compute
the corresponding feature maps. To ensure a fair comparison, all the maps were generated with the same number of
cells for each feature, i.e. up to 25 cells. The extreme values defining the range for each feature are the ones observed
across the runs of all the tools. Since the final maps produced by DeepHyperion and DeepHyperion-CS may have
different ranges and higher number of cells, we rescaled them by using the formula described in Equation 2.

Since the test subjects are fundamentally different, we adopted two separate configurations for testing them (see Ta-
ble 2). We empirically obtained those configurations after observing DeepHyperion-CS’s behaviour in few preliminary
runs. Specifically, DeepHyperion-CS obtained the seeds for MNIST by randomly selecting 900 inputs from the official
MNIST test set, all belonging to the same class (i.e., digit “5”) and then selecting the 800 most diverse inputs as initial
population. The seeds for BeamNG were 80 valid roads randomly generated by DeepHyperion-CS. Each seed was
defined by 10 control points in which the initial point was always at a fixed position, whereas the remaining points
were placed at a random position 25 meters away from the previous one and deviating from the previous segment by an
angle randomly chosen within a predefined range. DeepHyperion-CS then selects the 48 most diverse roads as initial
population.

As regards the selected feature dimensions, we used the features identified by applying ourmethodology (see section 2).
We considered only pairwise combinations of features to ease visualisation and discussion of the results, although
DeepHyperion-CS can work also with higher-dimensional maps. For MNIST, we considered all the pairs obtained
by combining Boldness (Lum), Discontinuity (Mov), and Rotation (Or), as these are the most significant features we
found in our feature selection study (see Table 1). For BeamNG, we considered three out of ten possible pairs of features
because executing driving simulations becomes soon prohibitively expensive and running experiments that cover all
the possible combinations would take excessive computation time. Nevertheless, we believe that the results we achieved
are representative as we cover all the three combinations types: two structural features, two behavioural features, and a
combination of a structural and a behavioural feature.
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To contextualise the results achieved by DeepHyperion-CS, we compare it against the original DeepHyperion and
other state-of-the-art testing tools for DL systems. We configured those approaches according to the configurations
that achieved the best performance in their papers.

Specifically, we compared DeepHyperion-CS against:

DLFuzz [26] This tool generates adversarial inputs for image classifiers, such as MNIST, by applying perturbations to
the pixels of existing images. It is mainly used for testing the robustness of DL systems. However, since it can
only manipulate individual images, we could not apply DLFuzz for testing BeamNG at the system level;

DeepJanus [59] This tool generates test inputs at the frontier of behaviours of DL systems, i.e., pairs of similar inputs
that trigger different system behaviours, by using a multi-objective search algorithm. DeepJanus shares with
DeepHyperion-CS the same model-based input representation; hence, we could apply it to both MNIST and
BeamNG;

AsFault [22] This tool generates safety-critical virtual roads for testing lane-keeping systems utilising a single-
objective genetic algorithm. Therefore, we could apply it for testing only BeamNG.

To enable a fair comparison with AsFault, we replaced its original failure identification mechanism with the one
employed by the other tools (i.e., DeepHyperion-CS, DeepHyperion and DeepJanus). Additionally, since AsFault
generates longer roads than the other tools, we split each road it generates into multiple segments when placing the
inputs on feature maps, making it possible to directly compare its output with the other tools. However, in this way a
single AsFault input may contribute to coverage of more than one cell in the feature map. While this might introduce
an unfair advantage for AsFault, it is balanced by the increased time it takes to simulate longer roads. Therefore, given
the same simulation budget, AsFault generates fewer inputs than the other tools, but each such input covers multiple
cells.

As the purpose of the considered baseline tools is finding misbehaviour-inducing inputs or frontier inputs, not
illuminating the feature space, in our experiments we consider the inputs generated (and possibly discarded) during
the input generation process, in addition to the inputs reported as final outputs of the tools. In particular, we report
separately the feature maps obtained from the final results of each tool (black box results) and the feature maps which
contain all the inputs produced during a run of each tool (white box results). Noticeably, for DeepHyperion and
DeepHyperion-CS the white box and black box maps coincide by construction, as all generated inputs are used during
the search in the local competition within each cell. For AsFault, white box results also coincide with black box results,
as this tool returns all the inputs generated during the search.

We followed the guidelines by Arcuri and Briand [4] for comparing the considered randomised algorithms: we ran
each tool multiple times and assessed the statistical significance of our conclusions by performing the Mann-Whitney
U-test and measuring the effect size using the Vargha-Delaney’s Â12 statistic. To enable a fair comparison, we ran the
tools in isolation on the same computing nodes and used the same generation budget: 1 hour for MNIST and 10 hours
of simulation time for BeamNG. We considered simulated time rather than real time for BeamNG since the former is
usually the bottleneck in simulation-based testing [2].

The reason for this remarkable difference between the generation budgets is that testing MNIST consists of feeding
it small images and getting the corresponding predictions, an operation that takes milliseconds, while testing BeamNG
requires the execution of real-time driving simulations that take minutes to complete. Correspondingly, we were able
to repeat the MNIST experiments 30 times, whereas we repeated the BeamNG experiments between 10 and 20 times,
adopting the following stopping condition (after 10 runs): no further repetition is conducted when the statistical test
Manuscript submitted to ACM
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Fig. 9. RQ1: Mapped misbehaviours found on MNIST by the considered tools (top) and their sparseness (middle and bottom).

used to compare DeepHyperion-CS and DeepHyperion reaches statistical significance (𝑝-value < 0.05) or when no
statistical significance is reached, but there is sufficient statistical power (statistical power 𝛽 > 0.8). In no case the
number of repetitions exceeds the upper bound, 20.

5 RESULTS

5.1 RQ1. Does the guidance provided by Contribution Score improve DeepHyperion’s effectiveness?

In this RQ, we investigate howmany diverse inputs the test subjects failed to handle correctly (i.e.,MappedMisbehaviours)
and how much they differ between them (i.e., Misbehaviours Sparseness).

Figure 9 reports the results achieved by the considered tools on MNIST as box plots grouped by feature combination.
As DeepJanus and DLFuzz output only a subset of the generated inputs at the end of each run, we considered

separately the misbehaviours reported at the end of the run (i.e., black box analysis) and the (possibly bigger) set of all
the misbehaviours triggered during the same run (i.e., white box analysis).

Correspondingly, the boxes labelled as DeepJanus-WB report more misbehaviours than DeepJanus-BB. DLFuzz’s
final results (DLFuzz-BB) show the same values of the boxes obtained from all its generated inputs (DLFuzz-WB)
because this tool returns to the user all the misbehaviours it triggers during a run.

Figure 9 (top) shows that DeepHyperion-CS found more than 200 diverse misbehaviours for each feature combination.
The illumination search based tools, i.e. DeepHyperion and DeepHyperion-CS, always found a significantly larger
number of mapped misbehaviours than the other tools (𝑝-value < 0.05 and large effect size). DeepHyperion-CS
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Fig. 10. Misbehaviour probability maps generated by DeepHyperion (a) and DeepHyperion-CS (b) for MNIST

significantly improves DeepHyperion’s effectiveness in triggering diverse misbehaviours (𝑝-value < 0.05 and large effect
size). In particular, DeepHyperion-CS produced a neatly higher number of mapped misbehaviours than DeepHyperion
for the Or-Mov feature combination, with over 120 more misbehaviours.

Both misbehaviour sparseness metrics reported in Figure 9 show that DeepHyperion-CS produced comparably
sparse or sparser misbehaviours than the other tools. In the majority of feature combinations (i.e. Or-Lum and Or-Mov), it
produced significantly sparser misbehaviours than the other tools (𝑝-values < 0.05 and large effect size). As for Mov-Lum,
DeepHyperion-CS performed as good as DeepHyperion and DeepJanus-BB (𝑝-values > 0.05) and significantly better
than the other tools (𝑝-values < 0.05 and large effect size) in terms of Misbehaviour Sparseness (Avg. Max). Moreover,
DeepHyperion-CS is significantly better than DeepJanus-BB for Mov-Lum in terms of Misbehaviour Sparseness (Avg.)
(𝑝-values < 0.05 and large effect size).

This result was achieved despite DeepJanus explicitly rewards the generated inputs’ diversity, having a fitness
function that promotes the euclidean distance among solutions.

We further analyse the relationship between the results achieved by DeepHyperion-CS and DeepHyperion by
comparing their misbehaviour probability maps (see Figure 10 and Figure 12).
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Fig. 11. RQ1: Mapped misbehaviours found on BeamNG by the considered tools (top) and their sparseness (middle and bottom).

The misbehaviour probability maps of DeepHyperion (see Figure 10b) and DeepHyperion-CS (see Figure 10a) for
MNIST show well-characterised regions of the feature space that are likely to expose failures, e.g. continuous and thick
digits. Therefore, our feature maps can be a powerful tool for developers to understand the conditions responsible for
misbehaviours, similarly to the more traditional root-cause analysis.

The probability maps produced by the two tools for the Mov-Lum feature combination are similar, with DeepHyperion-
CS’s map containing slightly more dark cells and 2 more cells with thick border; this is expected, since the two tools
achieved similar Mapped Misbehaviours and Misbehaviour Sparseness (see Figure 9).

For what concerns Or-Lum and Or-Mov, DeepHyperion-CS’s misbehaviour probability maps are more informative
(i.e. have less empty cells) than DeepHyperion’s ones. Consistently with the boxplots in Figure 9, DeepHyperion-CS’s
maps contain more dark cells than DeepHyperion’s maps.

Additionally, thanks to this visualisation we can easily identify the regions in the feature space that DeepHyperion-CS
explored and DeepHyperion missed. For instance, DeepHyperion-CS was able to explore large feature space regions
characterised by Or values smaller than −60.0 (i.e., the left side of Or-Lum and Or-Movmaps) that DeepHyperion missed.
The exploration of those regions paid off, as DeepHyperion-CS discovered a massive number of new misbehaviours
there.

Figure 11 shows the Mapped Misbehaviours and Misbehaviour Sparseness obtained when running the tools against
our second subject system, BeamNG.
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DeepHyperion-CS exposed several diverse misbehaviours for all three feature combinations (more than 10, on
average). In particular, DeepHyperion-CS found significantly more mapped misbehaviours than the other tools for
MLP-TurnCnt (more than 20, on average). The contribution score guidance of DeepHyperion-CS led to significant
improvements over DeepHyperion for the MLP-StdSA and MLP-TurnCnt feature combinations (𝑝-values < 0.05 with
medium and large effect size, respectively).

DeepHyperion-CS performed almost always significantly better and never performed worse than the other com-
petitors. In fact, only DeepHyperion for StdSA-Curv and DeepJanus-WB for MLP-StdSA and StdSA-Curv managed to
achieve results comparable to DeepHyperion-CS (𝑝-values > 0.05), whereas DeepHyperion-CS found a significantly
higher number of mapped misbehaviours in all the other comparisons (𝑝-values < 0.05, large effect size).

DeepJanus-WB reported significantly more mapped misbehaviours than DeepJanus-BB and proved to be a valid
challenger to DeepHyperion-CS in two feature combinations out of three. Instead, AsFault reported almost no
misbehaviour across all its runs, which suggests that it might be better suited for testing lane keeping systems at higher
speeds and on longer roads than the ones considered in our experimental configuration (we divided the long roads
generated by AsFault into segments to make them comparable to those generated by the other tools).

Misbehaviour sparseness metrics (see middle and bottom of Figure 11) show a similar trend. For MLP-TurnCnt,
DeepHyperion-CS generated significantly sparser misbehaviours than all the other tools considering Misbehaviour
Sparseness (Avg. Max), whereas it has a comparable misbehaviour sparseness to DeepJanus-BB in terms of Misbehaviour
Sparseness (Avg.)

For StdSA-Curv and MLP-StdSA, DeepHyperion-CS’s sparseness is higher than AsFault, comparable to DeepHype-
rion and DeepJanus-WB, but significantly lower than DeepJanus-BB for both misbehaviour sparseness metrics.

This result can be explained by considering the relatively small number of mapped misbehaviours reported by
DeepJanus-BB and their distribution on distant places of the subject’s behavioural frontier, which inflate the resulting
Misbehaviour Sparseness metric.

The misbehaviour probability maps of DeepHyperion (Figure 12a) and DeepHyperion-CS (Figure 12b) show almost
the same pattern. The probability maps show also that both tools were able to trigger different test outcomes even when
the same behavioural feature is exhibited by the driving agent: in the leftmost maps, the same values of the standard
deviation of steering angle (StdSA) feature may or may not trigger misbehaviours, depending on the value of the mean
lateral position feature.

Summary: DeepHyperion-CS can find diverse misbehaviour-inducing inputs for all feature combinations,

detecting up to 100 more misbehaviours than its best competitor on MNIST. The guidance offered by contribution

score significantly improved the DeepHyperion’s effectiveness for 5 out of 6 feature combinations across both test

subjects.

5.2 RQ2. Does the guidance provided by Contribution Score allow DeepHyperion-CS to explore the

feature space more extensively than DeepHyperion?

RQ2 investigates the generated tests’ adequacy in terms of their feature map coverage (i.e., Filled Cells) and diversity
(i.e., Coverage Sparseness). Figure 13 reports the results for MNIST as box plots grouped by feature combination.

For DeepJanus and DLFuzz, we report the cells filled by the inputs returned at the end of the run (i.e., black box)
and the number of all the cells filled during the same run (i.e., white box) as two separate boxes. DeepJanus finds pairs
Manuscript submitted to ACM
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Fig. 12. Misbehaviour probability maps generated by DeepHyperion (a) and DeepHyperion-CS (b) for BeamNG

of similar inputs that trigger different behaviours (expected vs misbehaviours); since inputs within pairs are likely to
occupy the same cell, DeepJanus’s Filled Cells values are close to the corresponding Mapped Misbehaviours reported in
Figure 9. DLFuzz-BB shows the same values reported for DLFuzz in Figure 9 since this tool returns only misbehaviours.
Instead, DLFuzz-WB has higher values because it includes also the correctly behaving inputs produced during each run.

Figure 13 (top) shows that DeepHyperion-CS covered all feature maps significantly more extensively than the other
tools (with 𝑝-values < 0.05 and effect size which is small for Mov-Lum and large for Or-Lum and Or-Mov).

Similarly to RQ1, DeepHyperion-CS produced the best results for the Or-Mov feature combination, almost doubling
the coverage achieved by DeepHyperion and tripling the one achieved by DeepJanus-WB.

The sparseness metrics reported in Figure 13 show that DeepHyperion-CS produced significantly sparser inputs
than all the other tools for two feature combinations out of three (i.e., Or-Lum and Or-Mov) with 𝑝-values < 0.05 and
large effect size. For Mov-Lum, DeepHyperion-CS achieved a level of coverage sparseness comparable to DeepHyperion
(𝑝-values > 0.05), but significantly higher than all the other tools.

Figure 14 reports the Filled Cells and the Coverage Sparseness achieved by the tools on the BeamNG subject system.
Figure 14 (top) shows that DeepHyperion-CS was again particularly good in covering the feature maps. In particular,
for the StdSA-Curv feature combination, it achieved significantly higher coverage than DeepHyperion (𝑝-value < 0.05,
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Fig. 13. RQ2: Filled cells (top) and coverage sparseness (middle and bottom) achieved by the considered tools on MNIST.

medium effect size). For the other feature combinations, it behaved comparably to DeepHyperion (𝑝-values > 0.05) but
filled significantly more cells than all the other tools (𝑝-values < 0.05, large effect size).

As shown in, Figure 14 both sparseness metrics show that DeepHyperion-CS produced tests that are significantly
sparser than DeepJanus-WB, comparably sparse as DeepHyperion, but less sparse than DeepJanus-BB and AsFault.

This result is due to the low feature map coverage achieved by DeepJanus-BB and AsFault, which amplifies the
relative sparseness of the (few) filled cells.

Summary: Our illumination based test generators (i.e., DeepHyperion-CS and DeepHyperion) always explored

the feature space more extensively than the other tools (up to 3× more for MNIST). The guidance provided by

Contribution Score allowed DeepHyperion-CS to fill significantly more cells than DeepHyperion for the vast

majority of feature combinations (i.e. 4 out of 6).

5.3 RQ3. How efficient is DeepHyperion-CS in exploring the feature space and generating test inputs

that expose diverse misbehaviours?

RQ3 investigates DeepHyperion-CS’s efficiency by analysing the cumulativemappedmisbehaviours (Figures 15a and 16a)
and filled cells (Figures 15b and 16b) for MNIST and BeamNG. We visualise the evolution of mapped misbehaviours and
Manuscript submitted to ACM
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Fig. 14. RQ2: Filled cells (top) and coverage sparseness (middle and bottom) achieved by the considered tools on BeamNG.

filled cells throughout the runs by plotting their average values over time as solid lines, surrounded by their standard
deviation as transparent shade.

We consider the AUC for mapped misbehaviours and filled cells to quantitatively compare the considered tools’
efficiency, i.e., the larger the AUC, the faster the metric increases to high values. For this RQ, we did not consider
white box and black box performance separately since we can measure the evolution over time only when white box
information is collected during the run.

For MNIST, Figure 15 shows that DeepHyperion-CS achieved a significantly greater AUC than all the other tools for
both metrics (𝑝-values < 0.05 and large effect size, with the only exception of mapped misbehaviours AUC for Mov-Lum
vs DeepHyperion, in which the effect size is medium).

In particular, for Or-Mov, DeepHyperion-CS produced a higher number of mapped misbehaviours in remarkably
less time than the other tools (AUC for Mapped Misbehaviours is 65% larger than the second best).

Figure 15 also shows that it took a small part of the 1-hour budget (i.e., less than three minutes) for DeepHyperion-CS
and DeepHyperion to outperform the other tools, by generating a significantly higher number of misbehaviours and
filled cells for all feature combinations (𝑝-values < 0.05 and large effect size).

By comparing the results achieved over time by DeepHyperion-CS and DeepHyperion, we can notice that
DeepHyperion-CS dramatically outperformed DeepHyperion after only three minutes for Or-Lum and eight minutes
for Or-Mov, whereas they followed a similar trend for Mov-Lum.
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(b) Filled Cells over time for DeepHyperion-CS, DeepHyperion, DeepJanus and DLFuzz on MNIST

Fig. 15. RQ3: Filled Cells and Mapped Misbehaviours over time for DeepHyperion-CS, DeepHyperion, DeepJanus and DLFuzz on

MNIST (shadows indicate standard deviations for each tool)

These results confirm that DeepHyperion-CS is extremely efficient from the very beginning of the search process
in exploring the feature space and exposing diverse misbehaviours in MNIST. Moreover, DeepHyperion-CS kept
discovering new cells, although at a lower pace as time progresses, which suggests that it did not reach saturation
within the given time budget.

Figure 16 shows the evolution of mapped misbehaviours and filled cells for BeamNG. While we assigned all tools a
budget of 10 hours of simulation time, in this RQ we are interested in assessing their practical efficiency and, thus, we
compute the evolution of the considered metrics over real time. As a consequence, the results span across different time
ranges for each tool. To guarantee a fair comparison, we compute the AUC by considering the minimum run time of all
the tools.

Figure 16a shows that DeepHyperion-CS was significantly more efficient in finding diverse misbehaviours than all
the other tools for MLP-TurnCnt (higher AUC, with 𝑝-values < 0.05, large effect size), while it never performed worse
than the competitors for the other feature combinations: for StdSA-Curv, DeepHyperion-CS achieved AUC of mapped
misbehaviours comparable to DeepHyperion and DeepJanus, and significantly better than AsFault; whereas only
DeepJanus was as efficient as DeepHyperion-CS for MLP-StdSA.
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(b) Filled Cells over time for DeepHyperion-CS, DeepHyperion, DeepJanus and AsFault on BeamNG

Fig. 16. RQ3: Filled Cells and Mapped Misbehaviours over time for DeepHyperion-CS, DeepHyperion, DeepJanus and AsFault on

BeamNG (shadows indicate standard deviations for each tool)

As regards AUC of filled cells, Figure 16b shows that DeepHyperion and DeepHyperion-CS covered the feature
maps significantly more efficiently than DeepJanus and AsFault for all feature combinations (𝑝-values < 0.05 and
large effect size).

In particular, DeepHyperion-CS showed significantly better efficiency in filling cells than DeepHyperion for
MLP-TurnCnt (𝑝-value < 0.05, medium effect size), whereas, they achieved comparable efficiency for the other two
feature combinations (𝑝-values > 0.05).

Summary: DeepHyperion-CS was extremely efficient, as it increasingly explored the feature space throughout

the time budget and it found misbehaviours within the first few minutes of exploration. DeepHyperion-CS was

always significantly more efficient than the competitors on MNIST. On BeamNG, DeepHyperion-CS showed either

significantly higher or comparable efficiency in comparison with the other tools. The guidance of the contribution

score remarkably improved efficiency (in 9 out of 12 comparisons against DeepHyperion).
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(a) MNIST (b) BeamNG

Fig. 17. RQ4: Average Filled Cells Expansion achieved by DeepHyperion-CS (green/right circles) over the training set (red/left circles).

Table 3. RQ4: Mapped misbehaviour expansion achieved by DeepHyperion-CS over the training set

Subject Feature Combination Mapped Misbehaviour Expansion

𝑀𝑀𝐸𝑢𝑛𝑐𝑜𝑣 𝑀𝑀𝐸𝑐𝑜𝑣

MNIST (Mov, Lum) 101.1 ± 12.0 60.9 ± 3.4
(Or, Lum) 19.7 ± 4.9 19.6 ± 2.4
(Or, Mov) 127.8 ± 16.5 48.3 ± 2.2

BeamNG (MLP, StdSA) 12.4 ± 5.1 3.1 ± 2.1
(MLP, TurnCnt) 11.2 ± 3.9 9.5 ± 2.6
(StdSA, Curv) 12.1 ± 4.9 0.0 ± 0.0

5.4 RQ4. Can DeepHyperion-CS be used to expand the training data? Can it find misbehaving inputs

also in cells that were already occupied by non-misbehaving training data?

RQ4 studies the relationship between the data used for training the DL system under test and the test inputs generated
by DeepHyperion-CS, by identifying features that were under-represented in the training set or were not associated
with any misbehaviour.

Venn diagrams in Figure 17a and Figure 17b illustrate the Filled Cell Expansion achieved by DeepHyperion-CS over
the training set for each feature combination. The red circles (left) represent the cells filled by the training set, the green
circles (right) represent the ones filled by DeepHyperion-CS’s generated inputs, and the overlapping region represent
cells that are covered by both.

DeepHyperion-CS achieved a remarkable filled cell expansion for the BeamNG system (see Figure 17b), where not
only it filled most cells already covered by training data, but it also explored new uncovered regions in the feature maps,
especially for the MLP-StdSA and MLP-TurnCnt feature combinations.

Figure 17a shows that DeepHyperion-CS was also able to improve the MNIST initial training set by adding samples
that better cover some feature combinations (see, e.g., the Venn diagram for Mov-Lum). This task was not trivial since
the MNIST training set by LeCun et al. [42] has been carefully crafted to be representative of its domain.

Table 3 summarises the average mapped misbehaviours expansion achieved by DeepHyperion-CS. Specifically,
column𝑀𝑀𝐸𝑢𝑛𝑐𝑜𝑣 reports the mapped misbehaviours that DeepHyperion-CS found in cells that were not covered by
the training set, while column𝑀𝑀𝐸𝑐𝑜𝑣 reports the mapped misbehaviours found by DeepHyperion-CS in cells already
covered by correctly behaving training inputs.
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The results show that DeepHyperion-CS was always able to find new misbehaviour-inducing feature combination
values in cells that were either uncovered or already covered by the training set. In particular, DeepHyperion-CS found
misbehaviours in cells that did not expose any issue in the training set for 5 out of 6 feature combinations.

Each 𝑀𝑀𝐸𝑢𝑛𝑐𝑜𝑣 value is generally higher than the corresponding 𝑀𝑀𝐸𝑐𝑜𝑣 for the same feature combination.
This indicates that cells covered by correctly behaving training inputs could still trigger misbehaviours, but such
misbehaviours are harder to expose.

Summary: DeepHyperion-CS was able to expand the initial training data for all feature combinations, achieving

up to 200% more filled cells for the StdSA-Curv feature combination. Moreover, DeepHyperion-CS not only found

new misbehaviour-inducing feature combination values in cells that were uncovered by the training set, but often

also in covered ones.

5.5 Threats to Validity

Construct Validity: the performance of the proposed approach and the quality of its results depend on the selected
features and the procedures to quantify them. For instance, there is the risk that the adopted metrics do not accurately
quantify the selected features. Moreover, the relevance of the features depends on the assessors’ knowledge of the
domain and the representativeness of the data used to extract the features. To mitigate this threat, we followed a
systematic procedure to identify relevant features and utilised a well established statistical correlation analysis to check
that the adopted metrics can quantify them. In particular, this procedure involved assessors that are experts on testing
DL systems and relied on large dataset of 630 images for MNIST and 440 virtual roads for BeamNG.
Internal Validity: our main focus in this work was assessing the impact of the Contribution Score guidance on
DeepHyperion’s efficiency and effectiveness. To limit as much as possible the chance that the comparison between
DeepHyperion and DeepHyperion-CS was affected by other con-causes, we used the same code base for both tools. As
a result, we provide a unique framework in which the users can control the level of contribution-based selection pressure
on the overall search process, i.e., the users can easily use the original DeepHyperion by setting the hyper-parameter
controlling the probability of using the contribution score selection to 0. A threat that could affect the experimental
comparison against existing test input generators is that their purpose is different from illuminating the feature space.
Therefore, their output may contain only the most critical inputs but exclude interesting inputs found during their
runs. We addressed this threat by considering also the inputs generated (and possibly discarded) during the input
generation process, in addition to the ones reported as final result by the tools. Furthermore, the Open Coding’s internal
validity may be threatened by elements that may introduce inconsistencies in the assessors’ evaluations independently
of the data, such as the data order and the repetitiveness of the task. To mitigate this threat, we conducted a pilot study
in which multiple assessors evaluated the same images, presented in a randomised order. Moreover, we granted the
assessors a generous time budget to perform this task (i.e., one month) through our Web application, which allowed
them to interrupt the task whenever they felt tired and resume it later on.
Reproducibility of our results is ensured by the online availability of the source code of DeepHyperion-CS, our
objects, and the experimental data. Moreover, we considered only open source tools in our experimental comparison.
External Validity: The choice of subject DL systems is a possible threat to the external validity. To mitigate this
threat, we chose two DL systems which solve two different problems, i.e., MNIST solves a classification problem, while
BeamNG is a self-driving car software that solves a regression problem. We considered DL architectures which are
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widely used in the literature and regarded as state of the art. Moreover, we adopted standard training procedures and
validated them with standard performance metrics, i.e. classification accuracy and mean squared error. In comparison
to the original DeepHyperion’s experimental setup [73], in this work we extend the generalisability of the results by
considering another state-of-the-art test generator, i.e., AsFault. The choice of relevant features introduces another
threat to external validity as DeepHyperion might not identify misbehaviours that do not align with the selected
features. Further studies involving more test subjects and domain experts, including practitioners from industry, should
be carried out to fully assess the generalisability of our findings and the impact of the feature selection.
Conclusion Validity: Random variations might have affected the results, given the highly stochastic nature of both
DL systems and the considered test generators. We mitigated this threat by following the widely adopted guidelines for
comparing randomised test generation algorithms proposed by Arcuri and Briand [4]. In particular, we used a generous
budget (i.e., multiple, long runs) and assessed the results’ significance through standard statistical tests.

6 RELATEDWORK

In the software engineering literature, DL systems’ quality is mostly assessed by automatically generating new inputs
that expose misbehaviours [22, 26, 47, 64]. Input generation for DL systems is often guided by novel test adequacy
criteria which are either adapted from traditional software testing literature (e.g., coverage, combinatorial, mutant
killing, number of triggered misbehaviours) or specifically crafted for DL (e.g., uncertainty or surprise) [58]. Only few
works [2, 59] make use of interpretable properties. To the best of our knowledge, besides DeepHyperion [73] and
DeepHyperion-CS, no technique aims at covering the feature space of DL systems.

6.1 Exploration-driven test generation

Traditional evolutionary search algorithms leverage an exploitation mechanism. This mechanism consists of rewarding
inputs with higher values of one or more fitness functions, which provide a heuristic distance of each candidate solution
from the searched optimum. Exploitation might return solutions which are concentrated in a small portion of the input
space, especially when the search landscape includes local optima with a large basin of attraction. In software testing,
finding good failure-inducing solutions is often insufficient, since testers may be interested in finding solutions spread
across the entire input space, as those could reveal different faults of the software under test.

Exploration-driven search algorithms reward individuals that exhibit diversity from the previous solutions, instead of
promoting only those that contribute to progress toward the optimum [43]. Exploration-driven algorithms, including
Novelty Search [43] and Viability Evolution [48], require some definition of input diversity, which is domain-specific and
far from trivial. Existing works in the software testing literature propose metrics to compute test case diversity in terms
of structural features, e.g., Euclidean distance between input vectors [11] and normalized compression distance [19], or
behavioural features, such as the output uniqueness proposed by Alshawan and Harman [3]. In this work, we adopted
both structural and behavioural input features. Exploration-driven search proved to be a viable approach to software
testing problems such as Web testing [8].

The combination of exploration and exploitation can be beneficial for evolutionary search, as shown for Android app
testing by Vogel et al. [66]. MAP-Elites by Mouret and Clune [52] balances exploration across the whole input space
with local competition between similar inputs. Other algorithms that combine exploration and exploitation are Novelty
Search plus Local Competition (NS+LC) [45] and Multi-Objective Landscape Exploration (MOLE) [15]. Marculescu et
al. [50] showed that MAP-Elites has higher exploration power, i.e., ability to investigate different areas of the feature
space, than other exploration and exploitation approaches, for testing a clustering algorithm.
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As for testing DL systems, Riccio and Tonella combined the traditional, exploitation-driven NSGA-II algorithm with
an exploration mechanism that promotes structural diversity of solutions [59]. DeepHyperion [73], which adapts
the MAP-Elites algorithm to test DL systems, proved to outperform the state-of-the-art approaches in extensively
exploring the feature space of a DL system and finding failure-inducing inputs that are different in terms of structural
and behavioural features. In this work, we improve DeepHyperion by implementing a mechanism which promotes the
inputs that contributed more to feature space exploration during the previous search iterations.

6.2 Test Input Generation and Adequacy

Traditional test adequacy criteria, such as code coverage, cannot assess whether DL systems are adequately exercised by a
test set. In fact, DL systems’ behaviourmostly depends on their training data, architecture and the tuning of several hyper-
parameters, rather than the code. Recent research defined ad-hoc test adequacy metrics for DL systems and proposed
input generation techniques guided by these metrics. Pei et al. [54] defined neuron coverage, an adequacy criterion
that measures the percentage of neurons whose activation level exceeds a certain threshold during testing. They also
designed DeepXplore, a test generator guided by neuron coverage to detect behaviour inconsistencies between different
DNNs. Several other approaches extended neuron coverage [47] or used it to drive test generation [16, 17, 26, 47, 64, 68].
DeepCT [46], instead, uses a set of combinatorial testing criteria for DNNs based on the interactions between neurons.

The test input generation approaches listed above generate adversarial inputs by adding small perturbations to the
original inputs. Adversarial input perturbations are widely used by the Machine Learning community to affect model’s
predictions [9]. Our approach, instead, is based on model-based manipulations, which ensure at the same time more
diversity and more control on the realism of the generated inputs. Moreover, we perform testing at the functional level
and we are interested in diversified feature combinations that trigger misbehaviours, while adversarial attacks expose
security and robustness vulnerabilities without promoting the spread of such attacks in the feature space.

Mutation adequacy criteria assess the ability of test data to expose artificially injected faults that simulate real faults
(i.e., mutations). A notable work in this area is DeepCrime [34], a mutation tool built on top of the notion of statistical
killing proposed by Jahangirova and Tonella [36], which injects mutations resembling real DL fault classes, such as the
ones defined in the taxonomy by Humbatova et al. [33]. DeepMetis [57] is a search-based approach that generates test
inputs that behave correctly on original models and misbehave on mutants, in order to increase the mutation killing
ability of a test set. Vahdat Pour el al. [55] generate adversarial examples for source code processing DNNs, guided by
the mutation killing criterion defined by Hu et al. [32].

Other input generators such as AsFault [22] and NSGAII-DT [2] aim to test advanced driver-assistance systems
by generating extreme and challenging scenarios that maximise the number of exposed system failures. Ul Haq et
al. [27] generate inputs to trigger diverse and extreme misbehaviours of DNN-based facial key-point predictors using
many-objective search in order to cover as many failure-inducing key-points as possible.

X. Zhang et al. [71] proposed an approach for generating test inputs with diverse uncertainty patterns (i.e., prediction
confidence score and variation ratio). They do not define adequacy criteria, but they suggest to generate test inputs that
target the least frequently covered uncertainty patterns.

Kim et al. [38] measure the degree of “surprise” of test inputs with respect to the training set with their adequacy
criterion named surprise adequacy. In their work, this criterion was used for test case selection and retraining, not for
test input generation.

All the test generators we mentioned above aim at maximising some adequacy metric, such as neuron coverage,
or at exposing misbehaviours. None of them considers the value combinations of interpretable features of the DL
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system under test as the target of test generation. Hence, existing test generators might completely ignore parts of a
feature map or might expose only misbehaviours that belong to a narrow map region. Our work is the first to provide
developers with a map of such features, where the generated inputs, and exposed misbehaviours can be interpreted
based on their position in the map.

6.3 Structural and Behavioural Properties

NSGAII-DT [2] is a testing approach targeting vision-based control systems. This approach builds on evolutionary
multi-objective algorithms and uses decision trees to guide the generation of new test scenarios within the multi-
dimensional space of the model parameters. Decision trees are used to identify the critical regions of the input space,
i.e., the combinations of model parameter values that are more likely to cause misbehaviours. Decision trees provide
interpretable information to developers as DeepHyperion-CS does with its feature maps. The variables that appear in
the decision tree nodes are the control parameters of the input scenarios. Decision trees increase the search efficiency by
focusing the search towards critical scenarios (collisions or near-collision at high speed with pedestrians). Instead, we
aim at covering the feature map at large, so as to ensure that as many regions as possible are tested and that regions with
misbehaviours are not left untested. Therefore, DeepHyperion-CS promotes inputs that contribute most to exploration,
in order to visit the feature space at large. At the same time, it uses local competition to keep in the map only the fittest
individuals, which can potentially lead to misbehaviour exposure.

DeepJanus [59] characterises a DL system’s quality as its frontier of behaviours, i.e., pairs of similar inputs that trigger
different (correct vs failing) behaviours of the system. DeepJanus provides users with a set of system’s frontier inputs, but
it does not explicitly characterise them based on structural or behavioural features. On the contrary, DeepHyperion-CS
produces maps that allow developers to interpret the misbehaviour-inducing inputs in terms of their feature values.

The properties we use as feature dimensions are identified by experts during the open coding step of our feature
selection methodology. In the literature, weak supervision approaches [72], e.g., the Data Programming paradigm [56],
exploit domain-experts’ knowledge to create and assign output labels to the training set elements. Unlike these
approaches, our open coding identifies input features that can be quantified by metrics, without considering their
relationship with the network’s expected output (i.e., the labels).

7 CONCLUSIONS AND FUTUREWORK

Most testing approaches for DL systems can successfully find misbehaviour-inducing inputs but fail to clearly explain
what are the structural and behavioural features that negatively influenced the system’s behaviour. DeepHyperion is
the first test generator that overcomes this limitation by providing an interpretable characterisation of DL systems’
quality through maps which represent the generated inputs in the space of their relevant features (i.e., the feature
space). DeepHyperion has demonstrated to be able to explore the DL systems’ feature space at large and trigger diverse
misbehaviours thanks to its illumination search based algorithm.

In this work, we proposed DeepHyperion-CS, a novel test generator for DL systems which enhances DeepHyperion
by promoting the inputs that contribute more to the feature map exploration during the search. Our empirical study
showed that the contribution-based guidance implemented within DeepHyperion-CS significantly improves the effi-
ciency and the effectiveness of DeepHyperion in finding misbehaviour-inducing inputs and exploring the feature space.
Moreover, we provided evidence that the inputs generated by DeepHyperion-CS can be also useful for characterising
and expanding the datasets used to train the DL system.
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Despite the remarkable results achieved so far, our work on testing DL systems using feature maps and illumination
search is at its dawn and opens many interesting directions for future research. As an example, we will design efficient
search strategies specific to higher dimensionality feature spaces, i.e., maps with more than two dimensions. We also
plan to apply the feature maps produced by DeepHyperion-CS to practical DL software development tasks. In fact,
we believe they are an intuitive approach for evaluating test set adequacy or guiding test selection. To extend the
applicability of DeepHyperion-CS to domains where an input model is not available, e.g., object detection with complex
real-world images, we will investigate GAN-based input representations and mutation operators.

Finally, since DeepHyperion-CS is designed to help DL developers interpret their software, we plan to generalise
our results to industrial DL systems and assess with practitioners the understandability and usefulness of feature maps.
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