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Testing Autonomous Driving Systems (ADSs) is crucial to ensure their reliability when navigating complex
environments. ADSs may exhibit unexpected behaviours when presented, during operation, with driving
scenarios containing features inadequately represented in the training dataset. To address this shift from
development to operation, developers must acquire new data with the newly observed features. This data
can be then utilised to fine tune the ADS, so as to reach the desired level of reliability in performing driving
tasks. However, the resource-intensive nature of testing ADSs requires efficient methodologies for generating
targeted and diverse tests.

In this work, we introduce a novel approach, DeepAtash-LR, that incorporates a surrogate model into
the focused test generation process. This integration significantly improves focused testing effectiveness and
applicability in resource-intensive scenarios. Experimental results show that the integration of the surrogate
model is fundamental to the success of DeepAtash-LR. Our approach was able to generate an average of
up to 60× more targeted, failure-inducing inputs compared to the baseline approach. Moreover, the inputs
generated by DeepAtash-LR were useful to significantly improve the quality of the original ADS through
fine tuning.
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1 INTRODUCTION

Deep Learning (DL) is progressively emerging as a fundamental component of complex software
systems, including Autonomous Driving Systems (ADSs). DL systems are highly significant in
the field of Software Engineering (SE), due to their capability to acquire knowledge for com-
plex tasks through training data [35]. This capability can also have negative implications, as DL

This work was partially supported by the H2020 project PRECRIME, funded under the ERC Advanced Grant 2017 Program
(ERC Grant Agreement n. 787703), and by the project Toposcope (SNF grant n. 214989).
Authors’ Contact Information: Tahereh Zohdinasab (Corresponding author), informatics, Universita della Svizzera ital-
iana, Lugano, Ticino, Switzerland; e-mail: tahereh.zohdinasab@usi.ch; Vincenzo Riccio,University of Udine, Udine, Italy;
e-mail: vincenzo.riccio@uniud.it; Paolo Tonella, Universita della Svizzera Italiana, Lugano, Switzerland; e-mail: paolo.
tonella@usi.ch.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1049-331X/2024/06-ART152
https://doi.org/10.1145/3664605

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 6, Article 152. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-0191-1151
HTTPS://ORCID.ORG/0000-0002-6229-8231
HTTPS://ORCID.ORG/0000-0003-3088-0339
https://doi.org/10.1145/3664605
mailto:permissions@acm.org
https://doi.org/10.1145/3664605
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664605&domain=pdf&date_stamp=2024-06-27


152:2 T. Zohdinasab et al.

systems may exhibit unexpected behaviours when presented with inputs containing features that
are absent or inadequately represented in the training dataset [27]. For instance, a lane-keeping

assist system (LKAS) might predict an erroneous steering angle when presented with a road
with an exceptionally sharp turn, if this particular variation is not adequately represented in the
training set. The consequences of a misbehaviour might be catastrophic for life-critical systems
like ADSs, potentially endangering all road participants (e.g., driver, passengers, and pedestrians).
Hence, ADSs necessitate rigorous testing employing appropriate techniques capable of generating
data beyond the datasets used during development [45, 55].

Test generation approaches specific to ADSs are designed to automatically produce
misbehaviour-inducing driving scenarios [2, 10–12, 19, 23, 26, 29, 46]. However, when developers
encounter inputs that result in a misbehaviour in the field, it becomes crucial for them to under-
stand the underlying causes of misbehaviour. For instance, they must identify which input features
are underrepresented and responsible for the observed misbehaviour [43, 56]. Consequently, de-
velopers need to obtain or generate new data that includes such features to effectively address the
issue. Ben Abdessalem et al. [2] use ranges of input/environment variables (e.g., pedestrian posi-
tion/speed) to automatically identify the most critical regions of the input space. However, their
approach has limitations, as input/environment variables do not fully characterise higher level ab-
stract properties of the road as well as behavioral properties of the driving system. Moreover, in
their approach the user cannot specify a specific range of interest, as the approach automatically fo-
cuses on input values that most likely trigger failures. SAMOTA [23] introduces a surrogate model
to make the test generation process for ADS more efficient and correspondingly more effective at
exposing misbehaviours. Whether such efficiency boost translates into an increased capability of
focusing the test generation process on interesting and possibly unexplored combinations of driv-
ing scenario features remains an open research question, which we address in our empirical study.

Feature maps [60] automatically organize and characterise misbehaviour-inducing inputs based
on human interpretable features encompassing both structural and behavioural aspects of the con-
sidered inputs. A feature map provides a representation of the feature space, which is defined by
a set of N relevant dimensions of variation (i.e., the map axes, each corresponding to an input
feature). In a feature map, test inputs are placed based on their feature values. These maps can
provide insights into a test set, such as revealing feature value combinations associated with tests
that triggered misbehaviours or indicating the likelihood of observing a misbehaviour for each
feature combination. Figure 1 shows an instance of a bi-dimensional feature map for a LKAS. This
feature map is defined by the car’s mean lateral position and the maximum road curvature. Each
combination of feature values corresponds to a map cell and is shaded to represent the likelihood
of experiencing a misbehaviour, with darker colors indicating higher probabilities. In the example
of Figure 1, the lane-keeping system under test is likely to fail for roads with very sharp turns
where the car drives close to the road margins. Feature maps have been applied in prior Soft-

ware Engineering (SE) research, serving various purposes, such as test generation [60, 61], test
selection [41], misbehaviour explanation [65], and test adequacy assessment [10, 11].

During the testing phase, feature maps identify the regions within the feature space that lack
sufficient coverage [10]. However, during operation, it is possible to encounter critical feature val-
ues that are under-represented in the train/test datasets used during development for which new
and diverse driving scenarios need to be collected and manually labelled [22]. Therefore, testers
need to find multiple misbehaviour-inducing test inputs associated with specific feature combina-
tions. These additional inputs can be used to improve the quality of the ADSs in production, by
fine tuning them on such new data.

DeepAtash [62] was the pioneer focused input generator for DL systems targeting human-
interpretable features, as it introduced a novel approach to generate misbehaviour-inducing inputs
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Fig. 1. Feature map for a lane keeping assistant system. The axes quantify mean lateral position and curva-

ture of the roads. The cells report the probability of exposing a misbehaviour for the corresponding feature

value combinations, i.e., darker colors correspond to higher misbehaviour probabilities.

with specific, user-defined feature values. This tool was successfully used for different usage sce-
narios, such as to collect new diverse inputs with critical, misbehaviour-inducing characteristics
( 1 in Figure 1), to stress the system to expose failures with inputs that do not seem critical ( 2 ),
or to generate new data with underrepresented or unseen feature values ( 3 ). For instance, a DL
system deployed in operation could encounter feature combinations that were rarely ( 1 , 2 ) or
never ( 3 ) observed during its development phase.

Through its search-based focused testing approach, DeepAtash proved its effectiveness by gen-
erating multiple diverse inputs with predefined target feature values for different DL systems,
i.e., image and text classifiers. However, DeepAtash may not be the ideal choice for testing
ADSs. In fact, its evolutionary nature demands multiple system executions to produce
misbehaviour-inducing inputs within the specified target. Testing ADSs is known to be resource-
intensive, since it requires expensive executions (e.g., simulations) to assess the system behaviour.
Consequently, DeepAtash might invest most of its test generation time-budget exploring un-
promising regions of the feature space, i.e., those that do not contain the target features or have a
minimal likelihood of causing misbehaviours, because each execution (i.e., simulation in the can-
didate test scenario) consumes a substantial fraction of the available budget.

In this work, we propose a novel focused test generator named DeepAtash-LR, specifically
designed for ADSs, with the primary goal of overcoming the aforementioned limitations of its pre-
decessor. The core innovation of DeepAtash-LR is its ability to reduce the computational resource
demands associated with the evaluation of less promising solutions. Our approach achieves this
goal by integrating a surrogate model within the evolutionary process. Surrogate models have been
extensively used for ADS testing since they closely emulate system behaviour, while drastically re-
ducing computational overhead [40]. Within DeepAtash-LR, the surrogate model plays a pivotal
role in predicting the likelihood of a misbehaviour and the behavioural features of the generated
inputs. Consequently, DeepAtash-LR executes the system only when the input is likely to belong
to the target feature map cell and is likely to trigger a misbehaviour. This strategic approach op-
timizes the utilisation of computational resources in ADS testing and makes a dramatically better
use of the available test generation budget.
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Our evaluation of DeepAtash-LR was conducted in the context of a LKAS DL component, using
the BeamNG driving simulator [8] across different usage scenarios. Our empirical results show
that the surrogate model is indispensable for generating misbehaviour-inducing inputs within the
predefined targets. Moreover, the inputs generated by DeepAtash-LR have been used to fine tune
the ADS under study and enhance its performance on under-represented feature combinations,
which were initially not handled at all (i.e., on failure-inducing feature combinations). After fine
tuning, the system improved remarkably, with no significant regressions.

In comparison to the original paper describing DeepAtash, the main extensions that can be
found in this paper are:

— an input generation approach for ADS focused on features that do not represent just val-
ues of input/environment variables, but rather represent higher-level structural/behavioral
properties of the test scenarios. This approach is an extension to ADSs of our focused test
generation approach, initially applied only to image and text classifiers;

— DeepAtash-LR, a novel tool that efficiently performs focused test generation by leveraging
a surrogate model. To the best of our knowledge, our solution is the first to integrate feature-
driven, focused testing and surrogate models in the ADS domain;

— a large empirical study which shows that DeepAtash-LR outperforms DeepAtash and an-
other state-of-the-art test generator, DeepHyperion-CS, in generating focused tests. In par-
ticular, we empirically show that focused test generation is feasible in the ADS domain only
if a surrogate model is integrated into the search algorithm;

— an experiment showcasing the practical application of DeepAtash-LR to an ADS develop-
ment task, i.e., fine tuning.

These extensions collectively contribute to the advancement and applicability of focused test
generation to ADSs.

To encourage open research, we release the code of DeepAtash-LR and the experimental
data at:
https://github.com/testingautomated-usi/deepatash

2 BACKGROUND ON FEATURE MAPS

A feature map represents the space of the features that are relevant for characterising the test
inputs. Such features can either be structural, i.e., characterising the input itself (e.g., the road
curvature) or behavioural, i.e., characterising the system’s output when exercised by the given
input (e.g., the mean lateral position of the car when driving on the input road). In particular,
we refer to the high-level, human-interpretable input features defined by experts in the work by
Zohdinasab et al. [60], such as the mean lateral position of the car and the maximum curvature
of the road, as shown in Figure 1. Each test input is placed within the corresponding cell of the
feature map. This assignment is achieved by computing metrics that quantify each input feature.
The map granularity (i.e., the number of map cells in each dimension) is configurable and can
be changed depending on the desired level of discrimination. The level of granularity can influence
the discriminative capability of the corresponding map, i.e., its ability to separate misbehaviours
from correct behaviours. If the granularity is too low, it may group together too many inputs, lead-
ing to an inadequate characterization of misbehaviors. As recommended in the original paper [61],
users can empirically define the granularity for each feature as the ratio between the desired gran-
ularity, i.e., the desired number of cells, and the expected range of the feature. Typically, opting for
a reasonably high granularity (e.g., at least 25×25 cells) has proven sufficient for ensuring effective
discrimination and characterisation.
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Multiple inputs belonging to the same map cells, allow the analysis of the probability of trigger-
ing misbehaviours in the corresponding feature space region. Misbehaviour probability maps are
feature maps that report, for each cell, the Average Misbehaviour Probability (AMP) observed
in different test suites. AMP is computed as the ratio of the number of misbehaviour-inducing
inputs to the total number of inputs in each cell.

In the misbehaviour probability map shown in Figure 1, the cells’ shade is proportional to their
AMP values (i.e., darker cells correspond to higher AMP values), while blank cells correspond to
feature combination values not covered by the available test inputs.

Feature maps have been used in the literature for different testing tasks. DeepHyperion-CS [60,
61] is a test generator that leverages feature maps for exploring the feature space at large and
finding failure-inducing inputs with different features. Nguyen et al. [41] used feature maps for
test selection; they ensure test diversity by selecting inputs that occupy different map cells. Feature
maps can also assess test suite adequacy, measured as the number of feature cells covered by the
test inputs in the test suite. A recent search-based testing competition adopted feature maps to
compare different test generators [10, 18], while the study by Biagiola et al. [11] compares the
feature maps generated by the same test generator on different driving simulators.

In this work, we rely on feature maps to identify the target feature values that interesting test
scenarios should cover and to guide DeepAtash-LR’s focused test generation process. Although we
considered pairwise combinations of features (i.e., bi-dimensional maps) to facilitate visualisation
and discussion of the results, our approach can work also with higher-dimensional maps.

3 FOCUSED TEST GENERATION USING SURROGATE MODEL

The primary objective of DeepAtash-LR is to generate test inputs with user-specified character-
istics (i.e., feature combinations) that trigger misbehaviours of the system under test. To achieve
this goal, DeepAtash-LR leverages the feature maps introduced in Section 2. Specifically, it gen-
erates inputs falling within a predefined feature map cell that trigger unexpected behaviours of
the system, while striving to maximize the sparseness among the generated solutions to produce
a wide range of diverse inputs.

Building upon our prior research [62], we adopt an evolutionary search based approach to
achieve our goal. This generates inputs which optimise three fitness functions, i.e., they (1) are
close to the target cell; (2) trigger a misbehaviour of the ADS; and (3) are diverse from the al-
ready found solutions. Given the desired target ranges of feature values, referred to as the target

cell (e.g., [1 : 5] × [10 : 15] if we want the first feature f1 to be between 1 and 5 and the second
f2 between 10 and 15), DeepAtash-LR guides the generation of novel inputs towards the feature
subspace defined by the specified values. DeepAtash-LR follows an iterative process wherein it
takes an initial set of inputs (referred to as seeds) and proceeds to manipulate them repeatedly until
they eventually fall within or close to the target cell defined by the user. The evolutionary process
within DeepAtash-LR is guided by fitness functions representing the distance to the target cell,
the closeness to misbehaviour and the distance from the previously discovered solutions.

The original DeepAtash algorithm [62] computes the closeness to misbehaviour of the gener-
ated inputs by running the ADS in the generated driving scenarios within a simulator, which can
be quite computationally expensive. It should be noticed that also the computation of behavioural
features requires the execution of the ADS under test in a simulator. This translates into multiple
executions of the ADS under test in each iteration. Even though evolutionary search algorithms
generally demonstrate good scalability, their ability to effectively generate inputs with specific
features may decrease when the evaluation of such inputs is expensive. A clear example of this
occurs when testing the lane-keeping assist component of an ADS. In this context, the assess-
ment of the system’s behaviour in each input scenario requires the execution of time-intensive
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simulations, which eventually constrain the evolutionary process by restricting the number of it-
erations performed within a given time budget (i.e., the number of generations of the evolutionary
search). In this work, we address this limitation by proposing a way to improve the efficiency of
the search-based algorithm, which translates also into its effectiveness, as a better use of the avail-
able time budget might lead to higher fault detection. Specifically, we employ surrogate models to
predict the system’s behaviour without the need for executing time-consuming simulations and,
thus, saving time during the optimization process. Surrogate models have recently gained popu-
larity [1, 13, 21, 23, 40] for emulating the behaviour of the original system. Surrogate models are
trained on datasets containing inputs and the corresponding behaviours of the systems. They ap-
proximate and mimic the behaviour of the original system without executing it, hence providing a
faster and more efficient way to evaluate the fitness of candidate test inputs, although such evalu-
ation is affected by some degree of approximation, due to the use of a surrogate instead of the real
system. Hence, their practical usefulness depends on the degree of approximation involved and on
the tolerance to approximation errors of the test generation algorithm, which can be only assessed
empirically. With surrogate models, ADS simulations are executed only when necessary, such as
when collecting data to train the surrogate model or when storing an input in the archive as a final
solution. The surrogate model allows the algorithm to decide whether an input is close enough to
the target or exhibits the desired characteristics without the need to run costly simulations for all
inputs.

Algorithm 1 presents an overview of our new focused test input generation technique. This
general pseudocode can be instantiated either as a single- or multi-objective optimization process.
The highlighted lines of pseudocode indicate the changes over the original DeepAtash algorithm.
The algorithm starts by initialising an empty archive A (line 1), that will store the best test inputs
generated during the search, i.e., the most sparse inputs with feature values falling within or close
to the target ranges. Then, the algorithm proceeds by generating an initial population P (function
InitialisePopulation at line 2), consisting of a specified number of individuals. These individ-
uals are instantiated by selecting elements from an initial pool of seeds S, which is provided as
input to the algorithm. Typically, S can be a subset of the test set available in the data set of the
ADS under test. Indeed, if a test set is not available or desirable, the subset S can alternatively be
composed of randomly generated inputs to serve as the initial pool for the test input generation
process. The first phase is concluded by determining the fitness values of all the individuals of the
initial population without using the surrogate model (lines 3-4). Since there is no data available
about the behaviour of the original ADS at this stage, we need to prepare the training data set for
the surrogate model based on these initial evaluations. Then, the algorithm initialises TrainingDS,
i.e., the training data set for the surrogate model, with the inputs from the current population
P (line 5).

The main evolutionary loop is performed until the termination condition is met (lines 6–22).
During the evolutionary loop, training of the surrogate model occurs only when a sufficient num-
ber of iterations has been performed and, thus, enough inputs have been generated to train the
surrogate model. Once this condition is satisfied (line 7), the algorithm trains the surrogate model
(line 8), and sets the UseSurrogate variable to True (line 9). At each iteration, the population is
mutated by genetic operators to produce its offspring Q (lines 11–14). The Repopulation oper-
ator avoids stagnation in local optima by replacing the worst individuals of the population (i.e.,
the ones with the lowest fitness values) with new inputs selected from the initial pool of seeds S

(line 15). In particular, Repopulation takes as input the archive A to avoid selecting seeds already
used to generate individuals present in the current archive A.

Function Evaluate calculates the fitness of the current population P and its offspring Q. This
function avoids redundant evaluations of the distance from the target cell and the closeness to
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ALGORITHM 1: DeepAtash-LR’s Focused Test Generation.
Input: B: execution budget

archivesize: target archive size
S: set of input seeds
popsize: population size
targetCell: target of focused test generation

epsilon: threshold for surrogate training

Output: A: archive of test inputs in the target cell
1 A← ∅;

2 population P ← InitialisePopulation(S , popsize);

3 UseSurrogate← False ;

4 Evaluate(P , A, targetCell, UseSurrogate) ;

5 TrainingDS← P ;

6 while elapsedBudget < B do

7 if elapsedBudget > epsilon × B and UseSurrogate is False then

8 TrainSurrogate(TraininдDS) ;

9 UseSurrogate← True ;

10 end

11 offspring Q← P ;

12 foreach q ∈ Q do

13 q←Mutate(q) ;

14 end

// substitute the worst individuals

15 P ← Repopulation(P , S , A);

16 Evaluate( P ∪Q , A, targetCell, UseSurrogate) ;

17 if UseSurrogate is False then

18 TrainingDS← TrainingDS ∪Q ;

19 end

20 A← UpdateArchive(P ∪Q , archiveSize, targetCell, UseSurrogate);

21 P ← Select(P ∪Q , popsize);

22 end

23 A← FilterMisbehaviours(A);

24 return A

misbehaviour for the individuals that have been already evaluated in the previous iterations, i.e.,
the individuals from P that have not undergone repopulation. However, the evaluation of sparse-
ness is performed at each iteration as it measures how dissimilar a new individual is from individ-
uals previously discovered and stored in the archive. In fact, the sparseness value of an individual
may vary at each iteration based on the current composition of the archive. The evaluation of the
behaviour and the feature values can be performed either using the surrogate model or the system
under test depending on the value of the UseSurrogate variable (line 16). The evaluated inputs are
continuously added to the training data set of the surrogate model only when we have used the
actual ADS for their evaluations (line 17-19).

The inputs that are close to the target cell, i.e., those with a distance from the target cell smaller
than a certain threshold, are saved in the archive A if they outperform the previously found
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Fig. 2. Road input representation and mutation. (a) original input; (b) original input model; (c) model mutated

by moving a control point; (d) mutated input.

solutions. In other words, if these inputs exhibit better fitness than the existing stored solutions,
they are added to the archive (line 20). It should be noticed that when an archive replacement is
supposed to happen, because a better individual was generated, the actual fitness values are needed.
If the individual’s evaluation was approximated by the surrogate model, when the individual
becomes a candidate for the archive it must be first evaluated against the real system, which means
the ADS must be simulated in the candidate input scenario.

Then, the Select function selects the popsize fittest individuals for the next generation
(line 21). When dealing with the optimization of multiple fitness functions simultaneously, the
ranking of individuals for selection in DeepAtash-LR is determined based on the principles of
Pareto dominance and crowding distance, as prescribed by the NSGA-II multi-objective optimiza-
tion algorithm [16] (see Section 3.5). When the execution budget B is finished, the algorithm filters
the misbehaviour-inducing inputs from the archive and reports them as final outcome (lines 23-24),
together with the AMP values of each feature map cell.

In the rest of this section, we provide a detailed description of the key aspects of DeepAtash-LR
and how we applied it to the lane-keeping application domain.

3.1 Input Representation

DeepAtash-LR can be classified as a model-based input generation technique [57], since it rep-
resents individuals, i.e., test inputs, as model instances and directly manipulates the model to
generate new data. Model-based techniques are widely adopted in various domains, including
safety-critical areas such as the automotive industry [34]. Model-based test input generation has
been already successfully applied to the ADS domain [1–3, 44, 46, 60–62], where a generative
model is available, in particular, for the lane-keeping task.

In our setting, test inputs are scenarios in which the car drives within the BeamNG simulator.
Following the state-of-the-art [19, 46, 60, 61], we represent a driving scenario to test the lane
keeping component as a plain asphalt road surrounded by green grass on which the car has to
drive by keeping the right lane. Such simulated roads are modelled as a sequence of consecutive
points in a bi-dimensional space, interpolated by Catmull-Rom cubic splines [15]. DeepAtash-LR
uses the recursive algorithm for the evaluation of Catmull-Rom cubic splines proposed by Barry
and Goldman [7] to transform a model’s instance (i.e., Catmull-Rom’s control parameters) into a
road that can be rendered in the simulator. Figure 2(a) and (b) show an original road input and
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its corresponding input model, respectively. In the input model, the larger red dots denote the
control points of the Catmull-Rom spline representing the central line, while the smaller grey dots
represent the interpolated points defining the road shape.

3.2 Fitness Functions

DeepAtash-LR’s optimization process utilises three fitness functions. They quantify: (1) the dis-
tance of the test input from the target cell; (2) the closeness of the ADS to cause a misbehaviour
when executing the given test input; and, (3) the distance of the input from the already found
solutions (i.e., its sparseness).

3.2.1 Distance from the Target Cell. To quantify the distance of an individual x from the target
cell c , DeepAtash-LR employs the Manhattan distance calculation. The algorithm computes the
Manhattan distance between the cell containing the individual x and the target cell c . The objective
is to minimize this fitness function, since the algorithm aims to find individuals that are closer to
the target cell.

min fitness1(x) = min dist(x , c) (1)

Given a target cell c = [l1 :u1] × . . . × [lN :uN ], with N the number of features being defined, the
range size si = ui − li along each dimension fi (with i ∈ {1, . . . ,N }) determines the Manhattan
distance of a given individual x from the target cell c , according to the following equations:

d(xi , ci ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌈
li−x .fi

si

⌉
, if x . fi < li

0, if li ≤ x . fi < ui⌈
x .fi−ui

si

⌉
, if x . fi > ui

1, if x . fi = ui

(2)

d(x , c) =
N∑

i=1

d(xi , ci ) (3)

Along each dimension i , the difference between the individual’s coordinate x . fi and the cell’s
lower/upper bound (li or ui ), divided by the cell size si , gives the number of cells that separate x
and c along fi (the value is rounded up, to get an integer). To ensure that the target cells remain
distinct from other cells, we defined the lower bound to be within the target cell and the upper
bound to be outside of it. Therefore, the Manhattan distance is set to 1 when the feature value x . fi
is equal to the upper bound of a target cell because we consider the individual xi as belonging to
the adjacent cell. Instead, the distance is set to 0 when x . fi is equal to the lower bound of a target
cell because we regard the individual xi as belonging to the target cell. This design choice prevents
overlaps between adjacent cells. The sum of the number of separating cells across all dimensions
corresponds to the Manhattan distance between x and c . Let us consider as an instance a target cell
c = [3 :6] × [4 :8] and a candidate solution x with feature values x . f1 = 9, x . f2 = 5. The Manhattan
distance between x and c is �(9 − 6)/3	 + 0 = 1 + 0 = 1.

3.2.2 Closeness to Misbehaviour. DeepAtash-LR aims to generate test inputs that trigger mis-
behaviours of the ADS under test. Therefore, it employs a problem-specific fitness function that
quantifies how close the ADS is to misbehaving when exercised with the evaluated input. By min-
imizing this fitness function, DeepAtash-LR identifies inputs that are more likely to trigger mis-
behaviours.

min fitness2(x) = min evaluateBehaviour(x) (4)
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For the lane-keeping problem, we characterise the behaviour of the system by the maximum
distance of the car from the center of the right lane during the simulation [30, 46, 53]. The fitness
value is calculated asmin(w/2−d), wherew is the lane width and d the distance of the car from the
center of the right lane. This fitness function gets its maximum value (w/2) when the car is at the
center of the right lane, whereas it gets a negative value when there is a misbehaviour, i.e., the car
is beyond one of the lane margins. All instances where this fitness function has a negative value
indicate a misbehaviour, i.e., the vehicle does not keep the lane. To ensure equal importance for all
misbehaviours, we cap the value of this fitness function for all misbehaviour-inducing individuals
to a small negative value (i.e., –0.1). To evaluate this fitness function, DeepAtash-LR can use either
the original ADS under test or the surrogate model trained with the inputs generated during the
evolution, along with the corresponding behaviours observed through simulation.

3.2.3 Sparseness. Ensuring diversity and distinctiveness in the generated test inputs is essential
for the effectiveness of a focused test input generator. By generating a wide variety of inputs that
are significantly different from one another, the generator can cover a broader range of execution
scenarios, which helps in thoroughly exploring the system’s behaviour.

To achieve this objective, DeepAtash-LR uses a fitness function that quantifies how dissimilar
an input is from the solutions previously discovered during the search. By maximizing this fitness
function, DeepAtash-LR encourages the generation of novel and unique inputs, leading to a richer
and more comprehensive set of test cases that can reveal different aspects of the system’s behaviour.
More precisely, DeepAtash-LR calculates the sparseness of the individual x with respect to the
individuals in the archive A as follows:

max fitness3(x) = max sparse(x ,A) (5)

Function sparse computes the minimum distance of x from the solutions in the archive A:
miny∈A,y�x dist(x ,y). The distance function dist is computed on pairs of inputs and is domain-
specific. Specifically, we use the weighted Levenshtein distance [46]. This metric considers the
minimum number of edit operations to transform one road into the other. Edit operations apply to
the two sequences of angles sampled on the spines of the two roads being compared. This distance
metric is suitable for the comparison of shapes of roads with different lengths and is robust against
translation and rotation. In fact, it takes into account the order of the points along the road spines,
as well as the relative angle between consecutive points.

3.3 Surrogate Model

As shown in Algorithm 1, each iteration of DeepAtash-LR involves the evaluation of newly gen-
erated individuals to compute their behavioural features and fitness values. This evaluation can
be performed using either the original ADS or the surrogate model, depending on the value of the
UseSurrogate variable. The surrogate model functions as a black-box component, accepting test
input (e.g., sequence of control points which represents the road shape) as input and generating
the desired variable (e.g., a behavioural feature) as output. DeepAtash-LR requires a set of labeled
inputs to train an accurate surrogate model. Consequently, a portion of the time budget is dedi-
cated to evaluating the generated inputs using the original ADS under test through simulations.
Once a reasonable amount of training data has been accumulated (i.e., after a given number of
iterations), this data is utilized to train the surrogate model. The amount of collected training data
is determined using the threshold ϵ in Algorithm 1, which defines the portion of time budget dedi-
cated to training data collection. This threshold can be chosen through preliminary runs to ensure
that the performance of the surrogate model is satisfactory. It is essential to set the threshold ϵ at a
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relatively low value; otherwise, adopting the surrogate model would be inefficient as the training
data collection time and the training time would be excessively long.

The trained surrogate model becomes a valuable asset for DeepAtash-LR within the remaining
time budget. Instead of relying on the original ADS for evaluations, our tool can use the surrogate
model to predict the behaviour of the ADS for new inputs (line 9). This replacement may reduce the
time and computational resources needed for evaluations, if the surrogate model is capable of de-
livering fast and accurate predictions. For problems such as lane-keeping, where input evaluation
involves costly simulations, utilizing the surrogate model can significantly impact the exploration
of the algorithm.

We adopted three distinct surrogate models to predict two behavioural features (i.e., mean lateral
position and standard deviation of steering angle) along with the closeness to misbehaviour (i.e.,
distance to the road boundaries). These predictions would need the execution of simulations in
the original configuration of DeepAtash.

By incorporating the surrogate model, DeepAtash-LR enables the evolutionary search to ex-
plore the feature space more effectively and efficiently. The surrogate model reduces the compu-
tational burden by providing faster evaluations, facilitating a more thorough exploration of the
search space in high-cost domains, such as the automotive one.

3.4 Archive of Solutions

The archive of solutions stores the best individuals encountered throughout the search process.
Upon reaching the last iteration of the search, the archive contains the final solutions, i.e., the
inputs within or close to the target cell. The archive is particularly useful to prevent the cycling

phenomenon, i.e., when the search moves from one cell of the feature space to another and back
again, with no memory of the cells it has already explored [39]. The archive helps to maintain
diversity in the search by preserving effective solutions, thus ensuring a more comprehensive
exploration of the feature space and avoiding redundant iterations.

The UpdateArchive function that manages the fixed-size archive of solutions is described in
Algorithm 2. In DeepAtash-LR, the surrogate model can be employed to predict the behaviour of
the original ADS, allowing for faster fitness evaluations during the evolutionary process. However,
when an individual is deemed as eligible for inclusion in the archive by the surrogate model, i.e.,
its predicted distance from the target cell is lower or equal to 1, DeepAtash-LR re-evaluates it
by performing a simulation using the original ADS. As shown in lines 3-4 of Algorithm 2, the re-
evaluation takes place only if the candidate was evaluated through the surrogate model. Such re-
evaluation recomputes the values of the behavioural features and of the fitness functions, allowing
to obtain a more accurate and reliable assessment. In fact, this additional evaluation step ensures
that individuals that are close enough to the target cell undergo a final assessment with the original
ADS to confirm their suitability for inclusion in the archive. By doing so, DeepAtash-LR maintains
the integrity of the archived solutions and ensures that the best-performing inputs are validated
against the real ADS system.

When the archive is not yet full (i.e., it contains less solutions than its predefined target size),
DeepAtash-LR adopts an inclusive approach towards candidate individuals. All individuals that
reach the target cell or the neighboring feature map cells are included in the archive (lines 6-8).
Otherwise, if the archive reaches its maximum capacity, the new candidate input competes with
the worst individual currently present in the archive, i.e., the individual stored in the archive with
the highest distance to the target and (for equal distances to the target) the lowest sparseness
(line 9). The competition is based on the values of fitness1, fitness2, and fitness3 of both the new
candidate input and the worst individual in the archive (lines 10-26). If the candidate individual
has a lower distance to the target than the worst archived individual, UpdateArchive replaces the
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ALGORITHM 2: The UpdateArchive function.
Input: P : population

A: initial archive
targetCell: target feature value ranges

UseSurrogate: if surrogate model is used or not

Output: A: updated archive
1 foreach p ∈ P do

2 if dist(p, tarдetCell) ≤ 1 then

3 if UseSurrogate then

4 Evaluate(p, A, targetCell, UseSurrogate=False);

5 end

6 if A is not full and p � A and dist( p , tarдetCell) ≤ 1 then

7 A.insert(p) ;

8 else

9 ind ← getWorstIndividual(A);

10 if dist(p, tarдetCell) < dist(ind , tarдetCell) then

11 A.insert(p) ;

12 A.remove(ind) ;

13 else

14 if dist(p, tarдetCell) == dist(ind , tarдetCell) then

15 if p.behaviour < ind .behaviour then

16 A.insert(p) ;

17 A.remove(ind) ;

18 else

19 if p.behaviour == ind .behaviour & p.sparse > ind .sparse then

20 A.insert(p) ;

21 A.remove(ind) ;

22 end

23 end

24 end

25 end

26 end

27 end

28 end

29 return A ;

worst individual within the archive with the candidate individual. In other words, the candidate
individual takes the place of the worst-performing individual in the archive if it outperforms the
latter in terms of distance to the target. This ensures that the archive retains the best-performing
individuals, which are closer to the target (lines 10-12). When the compared inputs have equal
distance to the target, the algorithm compares their closeness to misbehaviour and keeps in the
archive the best one, which is closer to induce a misbehaviour (lines 14-17). If the compared in-
dividuals have the same distance to the target and closeness to a misbehaviour, they compete on
the value of their sparseness: the sparser input is kept, while the other is discarded (lines 19-22).
Eventually (line 29), UpdateArchive returns the updated archive A.

At the end of the search process, the FilterMisbehaviours function (line 27 of Algorithm 1)
is executed to filter and retain only the misbehaviour-inducing inputs in the archive. Since the
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archive may also contain correctly-behaving inputs, this filtering step is necessary to focus solely
on the inputs that cause misbehaviours in the ADS under test.

3.5 Search Strategies

Selection of the best individuals (line 21 of Algorithm 1) requires a search strategy in the space
of the candidate individuals. Similar to our previous work [62], we evaluated two different search
strategies for DeepAtash-LR: Single-Objective search, which optimises only the distance to the
target, and Multi-Objective search, which explicitly rewards also the closeness to misbehaviour
and the sparseness.

3.5.1 Single-Objective Search. As a single-objective search strategy, we opt for a Genetic Al-

gorithm (GA) due to its demonstrated effectiveness in test generation [17]. Specifically, we utilise
a population-based GA that aims to minimize the Manhattan distance to the target cell. In each
iteration, the GA selects the best individuals from the current population and the offspring based
on their single fitness value. These selected individuals are then included in the next population,
facilitating the evolution of test inputs towards those that are closer to the target cell.

3.5.2 Multi-Objective Search. In the multi-objective strategy, the focused test generation search
algorithm optimizes all three fitness functions defined in Section 3.2. To accomplish this, we em-
ploy the NSGA-II algorithm [16], which is widely utilized in Software Engineering [2, 33, 36, 42, 44,
46] and has been reported to be highly effective for generating test cases. NSGA-II is well-known
for its ability to handle multiple objectives and efficiently explore the search space to find a diverse
set of solutions that represent different trade-offs between the multiple objectives. NSGA-II applies
Pareto front analysis to identify and prioritize solutions that are not dominated by any other in-
dividual, representing the best trade-offs among the fitness functions. Specifically, in NSGA-II, a
solution x is considered to dominate another solution y if x is at least as good as y in all fitness
values and strictly better thany in at least one fitness value. The ranking of individuals in NSGA-II
is based on Pareto dominance, where non-dominated fronts are selected and removed from the so-
lutions one after the other. Within the same Pareto front, individuals are further prioritized based
on their crowding distance. The crowding distance ensures diversity by selecting individuals that
are farther apart in the objective space, promoting a balanced spread of solutions along the Pareto
front [16]. Indeed, the adoption of the NSGA-II search strategy, with its multi-objective optimiza-
tion approach, introduces additional computational overhead due to the evaluation of multiple
fitness functions, Pareto dominance, and crowding distances. However, this strategy offers poten-
tial advantages as it explicitly promotes diverse and misbehaviour-inducing inputs.

3.6 Mutation

The Mutate function (line 13 in Algorithm 1) mutates an existing input to generate a new in-
put. This operator applies a perturbation, uniformly sampled in a customisable range, to the input
model’s control parameters. More specifically, DeepAtash-LR mutates the road geometry by ap-
plying a displacement to the coordinates of the model’s control points (see Figure 2). Each time
an input is mutated, DeepAtash-LR verifies that the mutant complies with the domain-specific
validity constraints. In particular, DeepAtash-LR verifies that the mutant is different from its par-
ent and it is a valid road, i.e., (1) the start point and the end point of the road should be different,
(2) the road should fall within a square bounding box of fixed size, and (3) a road should not self-
intersect. If any of these checks fails, the mutation operator is applied repeatedly, until a valid
input is obtained.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 6, Article 152. Publication date: June 2024.



152:14 T. Zohdinasab et al.

3.7 Population Management

DeepAtash-LR starts its search from an initial population of size popsize, which is obtained by
selecting from a larger pool of inputs, named seeds. Function InitialisePopulation (line 2 in
Algorithm 1) selects thepopsize individuals closest to the target from the seeds S . More specifically,
to generate the seed pool S , we randomly generate valid roads, i.e., roads with different start/end
points that do not self-intersect and are entirely contained within a squared bounding box of fixed
size.

In search-based approaches, including DeepAtash-LR, one common challenge is the possibil-
ity of getting stuck in local optima, which can limit the exploration of the search space despite
the efforts to promote diversity through mechanisms such as our sparseness fitness function (see
Equation (5)). To address this issue and foster increased variation within the population,
DeepAtash-LR incorporates a Repopulation operator.

At each iteration of Algorithm 1, the Repopulation operator replaces a portion of the worst-
performing individuals in the current population, specifically those with the lowest fitness values
(line 15). The new individuals are generated from a randomly selected seed that is not already
present in the current population or in the archive.

4 EXPERIMENTAL EVALUATION

4.1 Research Questions

The goal of our evaluation is to understand the effectiveness of our approach in generating
misbehaviour-inducing test inputs with the desired features. In particular, we compare two al-
ternative surrogate model candidates, assess different alternative configurations of DeepAtash-
LR, compare the best DeepAtash-LR configuration with an existing state-of-the-art test generator
(DeepHyperion-CS [61]), and investigate the usefulness of the generated test inputs for improving
ADSs. Therefore, we answer the following research questions:

RQ0 (DNN vs LR): Which type of surrogate model is more efficient and effective?

A crucial aspect of our approach involves the careful selection of the surrogate model, which is
tailored to the specific characteristics of the domain. To this aim, we explored the possibility of em-
ploying either Linear Regression (LR) or Deep Neural Networks (DNN) as surrogate models
to predict the behaviour of the driving agent. LR fits a linear model with coefficients (β0, . . . , βp ) to
minimize the residual sum of squares between the observed targets in the dataset, and the targets
predicted by the linear approximation. Mathematically it solves a problem of the form:

min
β0,β1, ...,βp

n∑
i=1

(
yi − (β0 + β1xi1 + β2xi2 + . . . + βpxip )

)2

where n is the number of observations, p is the number of features,yi is the observed target for the
ith observation, and xi j is the jth feature value for the ith observation. We adopted three separate
LR models for predicting two behavioural feature values and the fitness value measuring closeness
to misbehaviour.

As DNNs are general function approximators even for non linear functions, we considered two
distinct DNN architectures. The former consists of three dense layers with Sigmoid activation,
aimed to predict the closeness to misbehaviour. In fact, Sigmoid is a nonlinear function that sup-
ports also negative values. The latter consists ofthree dense layers with ReLU activation, aimed
to predict each behavioural feature. We use ReLU activations as this function is monotonic in
the positive range, consistently with the input values that range between 0 and infinity. While
there are other alternatives for designing the architecture of the surrogate models, we chose a
simple 3-layered architecture as ours is not a complex task and because we wanted to keep our
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approach efficient, i.e., with low training and prediction time. We also wanted to keep the number
of parameters small, as the expected training set size is small.

RQ1 (Surrogate Model): Does the surrogate model improve the effectiveness of the original tool,

DeepAtash?

This RQ assesses whether the use of the surrogate model impacts the effectiveness of focused
test generation in DeepAtash-LR. Specifically, our objective is to compare the performance of
DeepAtash-LR with the previous version, DeepAtash, which does not utilize surrogate models.

RQ2 (Single vs Multi Objective): Is DeepAtash-LR mode effective in the single or in the multi

objective configuration for generating focused test inputs?

DeepAtash-LR can be alternatively configured with single- or multi-objective search strategies,
as explained in Section 3.5. This RQ aims at comparing the effectiveness of such two alternative
configurations.

RQ3 (Comparison): How does DeepAtash-LR compare with the state-of-the-art tool

DeepHyperion-CS?

In this RQ, we are interested in whether DeepAtash-LR outperforms DeepHyperion-CS [61] in
generating test inputs in proximity of and within the target cell. We compare the best performing
DeepAtash-LR configuration (obtained from RQ2) against DeepHyperion-CS, as the latter is the
only state-of-the-art test generator that targets the feature space at large by means of an illumi-
nation search algorithm. DeepHyperion-CS tries to cover all feature combinations and thus it is
more likely to produce inputs on the selected target than, e.g., random techniques, which may
produce few or no inputs on the target, making the comparison with DeepAtash-LR impossible.
To the best of our knowledge, no other DL test generator is focused, i.e., capable of targeting a
specific region of the feature space. Moreover, DeepHyperion-CS [61] is a model-based test input
generator that is applicable to BeamNG and shares the same input representation and mutation
genetic operators as DeepAtash-LR. Such similarities allow for a fair and unbiased experimental
comparison by eliminating confounding factors, which helps us to assess the specific and isolated
contribution of our focused algorithm and the associated surrogate model (DeepAtash-LR) to the
test input generation process.

RQ4 (Usefulness): Can the test inputs generated by DeepAtash-LR be used to improve the ADS

system under test?

To investigate the usefulness of DeepAtash-LR in a common DL usage scenario, we simulate a
situation where a dev2op data shift is observed. This means that a particular feature combination is
frequently encountered during the operation of the DL system, but it was inadequately represented
or not present at all during the system’s development phase, e.g., in the original training data. In
this context, DeepAtash-LR serves as a valuable tool for testers to address this data shift and
target specific feature values of interest. By generating test inputs that focus on underrepresented
and critical feature combinations, testers can effectively fine-tune the DL system. In this way, the
generated test inputs are used to improve the quality of the DL system. Obviously, testers should
assess also that fine-tuning does not introduce regressions or unintended side effects, e.g., the
system may learn how to deal with the new test inputs, but might “forget” the correct behaviour
for inputs belonging to the original training set.

4.2 Metrics

In this study, we define feature maps by considering high-level features that effectively charac-
terize a self-driving scenario from the input and behavioural viewpoint. Specifically, we resorted
to the features proposed in the DeepHyperion-CS paper [61]. These features and the metrics to
measure them were obtained by adopting a systematic methodology for feature definition and met-
ric identification [60]. For this work, we chose the following features that cover both structural
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and behavioral attributes of the test inputs, thereby providing a comprehensive assessment of the
driving agent’s quality.

— Standard Deviation of Steering Angle (StdSA): measures the level of activity exhibited by
the driving agent on the steering wheel and can be used to quantify passenger comfort and
driving quality;

— Mean Lateral Position (MLP): represents the ego-car’s positioning within the right lane. It
is computed as the mean distance between the center of the car and the right lane margins;

— Turn Count (TurnCnt): corresponds to the number of direction changes between consec-
utive road segments, with a requirement that the angle of change be at least 5◦.;

— Maximum Curvature (Curv): provides insight into the severity of the turns composing
each road, by computing the reciprocal of the minimum road turn radius.

To compare alternative surrogate models, we use Mean Absolute Error (MAE) and Mean

Squared Error (MSE). These metrics are commonly used to evaluate the performance of ADS
components in offline mode, i.e., without performing simulations. Given a set of predictions ŷi and
the corresponding expected values yi for n data points, MAE and MSE are computed as follows:

MAE =
1

n

n∑
i=1

|(ŷi − yi )| (6)

MSE =
1

n

n∑
i=1

(ŷi − yi )
2 (7)

A lower MAE/MSE indicates that the model’s predictions are closer to the expected values, sug-
gesting a better fit of the model to the data. In addition, we report the training time of each model
to assess their efficiency.

We evaluate DeepAtash-LR’s effectiveness by counting the inputs that fall within or close to
the target cell. To this aim, we measure the Tests Close to the target (TC), a metric that quantifies
the number of generated misbehaviours in the proximity of the target feature map’s cell, i.e., the
solutions stored in the archive with distance to the target lower than or equal to 1. Additionally,
we assess DeepAtash-LR’s ability to cover the target cell by computing the number of Tests on

Target (TT), i.e., the number of misbehaviours that fall exactly within the boundaries of the target
cell.

We favor a test input generator that generates diverse inputs for the target feature map cell
since it may allow to discover multiple causes of misbehaviours. To evaluate the diversity of test
inputs, we resort to the Tests Close to the target Diversity (TCD) and Tests on Target Diversity

(TTD) metrics. To this aim, we project the generated inputs in a lower dimensional space by using
the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [25, 58], which projects
similar inputs to neighbouring points and dissimilar inputs to distant points with high probability.
Specifically, we project the inputs generated by all approaches being compared onto the same
t-SNE space and group neighbouring points using a clustering algorithm in such a space. The
diversity value for each approach is computed by counting the number of clusters that contain
at least one input generated by the respective approach. These counts are then divided by the
total number of clusters. The resulting values represent the input diversity produced by each test
generator [13]. For each, test generation approach, TCD and TTD measure the relative cluster
coverage obtained by the tests close to the target or on target, respectively. A higher diversity value
signifies that the inputs are spread across a broader range of distinct clusters, indicating a more
varied and comprehensive exploration of the feature subspace of interest by the test generator.
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Fig. 3. Example t-SNE plot to explain the computation of test diversity metrics, with clusters represented as

empty circles containing inputs (smaller, solid shapes).

We configured t-SNE by selecting 2 as the number of dimensions, as it performed well in prelim-
inary runs and facilitated the interpretation of the results. For the t-SNE perplexity, which affects
how inputs are scattered or concentrated, we set it to 0.1 based on visual inspection of the plots
obtained with different values. To perform clustering, we applied the k-Means algorithm [6] and
performed Silhouette analysis [48] to determine the optimal number of clusters k∗, i.e., the value
with optimal balance between cohesion and separation of the clusters.

Figure 3 exemplifies the diversity comparison between two DeepAtash configurations. The
circles and squares represent the inputs generated by different tool configurations in the 2D t-
SNE space. The samples are grouped into clusters (represented as circles enclosing samples) and
diversity is computed as the number of clusters covered by each configuration. In this example,
the diversity value is 0.7(7/10) for NSGA-II (green squares) and it is 0.5(5/10) for GA (blue circles).

We evaluate DeepAtash-LR’s usefulness by assessing the driving model’s performance after
fine tuning it on DeepAtash-LR’s inputs. We consider both offline and online evaluation. Offline
evaluation involves testing the DL model using pre-collected data without real-time interaction,
while online evaluation involves deploying the DL model in a real-time, interactive environment,
typically using a simulator.

MAE and MSE are particularly useful for assessing regression tasks, in which the goal is to
predict continuous numerical values. We measure MAE and MSE before and after fine tuning the
model in offline mode. To evaluate the model in online mode, we measure Success Rate (SR) which
indicates the ability of the self-driving car to drive on the road without any failure (i.e., without
driving out of the boundaries of road). Online evaluation is conducted to verify that the model
successfully passes the regression test scenarios [24, 52].

4.3 Subject System

We evaluate DeepAtash-LR on a popular, safety-critical DL-based ADS. Specifically, we considered
the DAVE-2 end-to-end driving agent, which utilizes the DL architecture developed by Bojarski
et al. [14]. Such architecture consists of a sequence of three convolutional layers and five fully-
connected layers. The objective of DAVE-2 is to address a regression task by predicting steering
angles based on images captured by the on-board camera, ensuring the ego-car remains within
the right road lane. DAVE-2 has been adopted as subject system by a large number of studies
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Fig. 4. Test execution within the BeamNG simulator.

on ADS and DL system testing [11, 28, 31, 32, 46, 50, 51, 54, 60, 61]. We integrated the DAVE-2
model into the BeamNG.tech driving simulator [8] to reproduce the behaviour of the selected ADS
within synthetically generated driving scenarios. BeamNG.tech is extensively employed in the
software testing literature [55], as it features a soft-body dynamics simulation rooted in a spring-
mass framework. Such simulation capability facilitates precise emulation of physical attributes,
including vehicle deformation, offering a valuable tool for both researchers and practitioners (see
Figure 4).

Since DAVE-2 operates through behavioural cloning, i.e., it learns to establish a mapping be-
tween images and steering angles based on examples, we exclusively utilized positive examples
for training. Specifically, we trained DAVE-2 with images captured by the BeamNG.tech on-board
camera coupled with corresponding steering angles of the ego-car, automatically collected by run-
ning the simulator’s autopilot on 40 randomly generated roads (the autopilot computes optimal
trajectories based on global knowledge of the environment, which is unavailable when the DNN is
driving and the only input comes from the camera). The training process consisted of 200 epochs,
with batches of size 128 and a learning rate of 0.0001. The good quality of the trained model was
evaluated using a test set comprising 10 randomly generated roads, distinct from the ones used
in the training. The model adopted for our experiments was able to correctly perform the driving
task on all the roads of the test set, achieving a success rate of 100%.

4.4 Evaluation Scenarios

We leveraged misbehaviour probability maps and the AMP metric to replicate various selections
of the target cell from the maps reported in Figure 5. This was achieved through the assessment
of DeepAtash-LR in the following scenarios:

Dark Targets: targets selected from cells characterized as dark (i.e., misbehaviour probability
> 0.8). These cells correspond to feature values that are more prone to misbehaviours. In this
scenario, the user aims to collect a diverse set of new inputs that possess critical attributes. Such
a choice might be driven by the intention to improve the DL system’s performance;

Grey Targets: targets corresponding to covered cells with misbehaviour probability ≤ 0.8.
These cells represent combinations of feature values that generally lead the DL system to function
as intended. Consequently, in this scenario the user wants to stress the DL system with inputs char-
acterized by seemingly non-critical attributes. This approach facilitates an exploration of whether
such inputs could potentially trigger misbehaviours, thus contributing to a comprehensive assess-
ment of the DL system’s robustness;
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Fig. 5. Average Misbehaviour Probability (AMP) maps generated by DeepHyperion-CS for BeamNG. The axes

quantify different features. The cells report the probability of exposing a misbehaviour for the corresponding

feature value combinations, i.e., darker colors correspond to higher misbehaviour probabilities.

White Targets: cells that do not contain any input. This scenario reflects gaps within the dataset
and, consequently, in the knowledge of the DL system under test. The user’s objective is twofold:
firstly, to generate new data that covers the missing combinations of feature values; and secondly,
to assess the self-driving car’s behaviour and potential outcomes for the chosen feature value
combinations.

4.5 Experimental Procedure

To answer our research questions, we ran DeepAtash-LR in the three evaluation scenarios out-
lined in Section 4.4, along with DeepHyperion-CS, on the subject system. We focused our analysis
on a subset of three pairs of features, chosen from the total of six possible pairs, due to practical
considerations. Specifically, the cost of conducting complex and resource-intensive driving simu-
lations escalates significantly. To ensure a controlled and effective evaluation process, we carefully
selected three representative and diverse pairs of features that were likely to provide valuable in-
sights into the performance and behaviour of the DL system. In particular, we chose a combination
of two structural features (i.e., Curv-TurnCnt) and two combinations consisting of a structural and
a behavioural feature (i.e., TurnCnt-StdSA and Curv-MLP). These selections are particularly inter-
esting because for these combinations the exploration achieved by DeepHyperion-CS is not as
extensive as for other feature combinations (which justifies a focused approach) and because they
contain a lower number of misbehaviours.

For each evaluation scenario, the first step is the selection of the target cell from the misbe-
haviour probability maps generated by DeepHyperion-CS (see Figure 5). Specifically, we require
that the chosen target cell contains a number of instances that falls below the average count ob-
served across all cells within the feature map. This filtering mechanism ensures that cells with
comparatively fewer occurrences are prioritized for selection, tackling the scarcity of data in such
regions. Correspondingly, we randomly chose dark cells and grey cells with a coverage (i.e., num-
ber of individuals assigned to the cell) achieved by DeepHyperion-CS lower than the average cell
coverage across all DeepHyperion-CS’s runs.

Notably, this filter is not applicable to white cells, as they do not contain any existing data. For
white targets, we selected cells that were not covered in the DeepHyperion-CS misbehaviour prob-
ability maps. However, since uncovered cells might correspond to unfeasible feature combinations,
we randomly selected white cells that were adjacent (with a distance ≤ 1) to covered cells.

We ran DeepAtash-LR focusing on the identified target cells and collected the resulting archives
of solutions. The hyperparameters of DeepAtash-LR were derived, whenever possible, from the
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Table 1. Hyperparameters used in the Experiments

Parameter BeamNG
seed pool size 80
initial pop size 48
population size 10
time budget (s) 36000
repopulation upper bound 2
target archive size 10
number of epochs for retraining 20
learning rate for retraining 0.0001

experiments conducted with DeepHyperion-CS, reported in its original paper [60]. We fine tuned
these hyperparameters through a few preliminary runs to ensure that the target cells could be
reached. The values of the hyperparameters are presented in Table 1.

We initiated the search process by randomly generating a pool of seeds, the quantity of which
was defined as the seed pool size. These seeds serve as starting points for the search processes. From
this pool of seeds, we selected the initial pop size inputs that were closest to the target cell. These
chosen inputs constituted the initial population for the targeted test generation. By starting the
search in proximity to the target, we focus the optimization process on relevant regions, thereby
increasing the likelihood of generating inputs that trigger failures and possess feature values of
interest.

To allow statistical analysis, we performed the same number of runs for each configuration of
every test generator. We ran DeepAtash-LR 10 times for each type of target (i.e., dark, grey and
white targets), for each feature combination (Curv-TurnCnt, TurnCnt-StdSA, Curv-MLP), and for
each considered search strategy (i.e., GA and NSGA-II). Since there were no dark target areas in the
AMP of theTurnCnt−StdSA feature combination, we excluded the dark target area specifically for
this target type – feature combination pair. Hence, in total we performed 10× (3× 3− 1) × 2 = 160
DeepAtash-LR runs. As for DeepAtash, we started our experimentation considering one feature
combination for each type of target. Correspondingly, DeepAtash underwent execution with two
search strategies for three pairs of target type and feature combination, resulting in a total of
2×3×10 = 60 DeepAtash runs. Since after collecting these results the superiority of DeepAtash-
LR was undoubtedly obvious, we preferred to save experimentation time and we did not run the
remaining five pairs of target type – feature combination. DeepHyperion-CS is not a focused test
generator, so it does not require to be executed for different target types. Consequently, we run
DeepHyperion-CS 10 times for each of the three feature combinations (10×3 = 30 DeepHyperion-
CS runs) In summary, the total number of runs performed was 250 (160 DeepHyperion-CS + 60
DeepAtash + 30 DeepAtash-LR).

To ensure a fair comparison, we ran all tools with the same time budget (i.e., 10 hours).
To assess the statistical significance of the comparisons between DeepAtash and DeepAtash-
LR (RQ1), between different DeepAtash-LR configurations (RQ2), and between DeepAtash and
DeepHyperion-CS (RQ3), we applied the Mann-Whitney U-test and measured the effect size by
means of the Vargha-Delaney’s Â12 statistic [5].

In our experiments we used the best-performing surrogate model found by RQ0. Specifically, we
ran DeepAtash-LR on a predefined target cell with a time budget of 2 hours to collect the training
data and trained the surrogate models, i.e., a LR and a DNN. Then, we assessed the surrogate models
on a random pool of 40 valid roads. To allow statistical analysis, we repeated this experiment
10 times, using a different test set for each repetition.
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Table 2. RQ0 - Mean Absolute Error (MAE), Mean Squared Error (MSE) and Training Time (Time) for

DNN and Linear Regression (LR) as Surrogate Model for DeepAtash-LR

MLP StdSA Closeness to Misbehaviour
Surrogate Model MAE MSE Time (s) MAE MSE Time (s) MAE MSE Time (s)
DNN 26.062 2837.120 4.154 31.208 999.487 2.7436 0.211 0.056 2.461
LR 2.076 4.823 0.059 27.834 793.185 0.000 0.308 0.102 0.001

In each column, boldface indicates the minimum for MSE and time; underline indicates values significantly higher
than the remaining ones (p-value < 0.05, non-negligible effect size).

To address RQ4, we performed fine tuning [9] of the DL model under test. The fine tuning pro-
cess involved extending the model’s training by conducting additional epochs under the same
configuration (see Table 1). Such training was performed using the test inputs generated by
DeepAtash-LR that were close to (TC) and within (TT) the designated target regions. To this
aim, we collected all the inputs generated by DeepAtash-LR within and close to the targets. Then,
we divided these inputs into two distinct sets, i.e., traininдDA and testDA, 80% for training and the
remaining 20% for testing. The combination of the original training set and traininдDA was used
to fine tune the DL system. This choice reduces the risk of forgetting the learned task, by ensuring
that both original training data and newly generated inputs are simultaneously available during
training. As described in Section 4.3, we generated 10 random valid roads to serve as the test set.
This test set and testDA were employed to evaluate the accuracy improvement of the fine-tuned DL
system and verify if the driving agent exhibited a decline in handling inputs that were previously
managed correctly before fine-tuning. To establish the statistical significance of the improvement
in accuracy, we repeated the fine-tuning procedure 10 times for every run of DeepAtash-LR on
each target cell. This iterative approach allowed us to gather sufficient data and obtain reliable
statistical results.

5 RESULTS

5.1 RQ0: DNN vs LR

To choose the most suitable surrogate model for our purpose, we compared the candidate models,
i.e., DNNs and LRs (see Section 4). Table 2 shows the results achieved by adopting DNN and LR
models in terms of MAE and MSE along with the time needed to train them. LR achieved signifi-
cantly lower MAE, MSE and training time than DNN for both behavioural features. Remarkably, LR
achieved 588× lower MSE than DNN for the MLP feature. As fitness predictors, i.e., for the value of
closeness to misbehaviour, DNN led to better predictions in terms of MSE, while MAE and training
time were significantly worse than LR. Hence, we ultimately selected LR as the surrogate model
for DeepAtash-LR.

The good performance of LR suggests that the relationship between the input features and the
fitness values can be assumed to be approximately linear.

Summary: Linear Regressors are more effective and efficient than DNNs as surrogate models

for predicting behavioural features as well as the performance of the considered ADS.

5.2 RQ1: Surrogate Model

To assess the usefulness of the surrogate model, we conducted a comparative analysis between
DeepAtash-LR and DeepAtash. Specifically, we considered only the three evaluation scenarios
in which both test generators were focused on the same type of target for the same feature combi-
nation (see first two columns of Table 3 and Table 4).
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Table 3. RQ1 - Tests Close to Target (TC), Tests on Target (TT), Tests Close to Target Diversity (TCD), and

Tests on Target Diversity (TTD) by DeepAtash and DeepAtash-LR

DeepAtash DeepAtash-LR
GA NSGA-II GA NSGA-II

Features TC [TCD] TT [TTD] TC [TCD] TT [TTD] TC [TCD] TT [TTD] TC [TCD] TT [TTD]
Dark Curv-TurnCnt 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 4.30 [0.50] 3.70 [0.40] 7.40 [0.90] 6.40 [0.80]
Grey TurnCnt-StdSA 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 2.40 [0.70] 2.30 [0.70] 3.70 [0.70] 1.70 [0.50]
White Curv-MLP 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 4.80 [0.50] 2.90 [0.30] 4.70 [0.50] 4.70 [0.50]

In each row, boldface indicates the maximum metric values between DeepAtash and DeepAtash-LR, both with GA
(resp. NSGA-II); underline indicates values significantly higher than the remaining ones (p-value < 0.05,
non-negligible effect size).

Table 4. RQ1 - Number of Iterations Performed by DeepAtash and

DeepAtash-LR in the Same Time Budget

DeepAtash DeepAtash-LR
Features GA NSGA-II GA NSGA-II

Dark Curv-TurnCnt 116.10 132.70 187.30 183.10

Grey TurnCnt-StdSA 104.70 122.70 155.20 196.80

White Curv-MLP 117.60 114.40 312.80 284.80

In each row, boldface indicates the maximum metric values between DeepAtash and
DeepAtash-LR, both with GA (resp. NSGA-II); underline indicates values significantly
higher than the remaining ones (p-value < 0.05, non-negligible effect size).

Table 3 presents the results achieved by DeepAtash and DeepAtash-LR, using two distinct
search strategies (GA and NSGA-II). As illustrated in the table, DeepAtash was not able to gener-
ate inputs close to the target, when operating without the support of a surrogate model. In fact,
DeepAtash achieved zero test inputs both directly on the target (TT) and in close proximity to the
target (TC) across all of its runs. Conversely, by integrating a Linear regression model within the
search process, DeepAtash-LR exhibited a substantial enhancement. This improvement is mani-
fested in the presence of diverse inputs generated, both in close proximity to the target (TC) and
directly on the target (TT), across all feature combinations.

Furthermore, Table 4 reports the number of iterations performed by DeepAtash and
DeepAtash-LR within the given time budget. This count of iterations serves as an indicator of
the extent of the search process undertaken by each approach during the test input generation
procedure. DeepAtash-LR executed a significantly higher number of search iterations compared
to DeepAtash, for all targets (i.e., up to 199 more iterations for the white target). This increase
can be attributed to the time-saving advantage gained by leveraging the surrogate model to avoid
expensive simulations.

These results indeed affirm the crucial role of the surrogate model in directing DeepAtash-LR
towards the target feature space through increased (surrogate) evaluations, thereby resulting in
the creation of more focused test inputs, reaching the target.

Summary: The integration of surrogate models into the focused test generation process is

beneficial in scenarios where evaluations entail resource-intensive simulations. The adoption

of surrogate models allowed DeepAtash-LR to navigate the feature space with increased ef-

ficiency and efficacy, facilitating the production of diverse misbehaviour-inducing inputs in

proximity of and within the target cells. In our case study, without surrogate model Deep-

Atash did not reach any target cell and performed substantially less search iterations than

DeepAtash-LR.
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Table 5. RQ2 - Tests Close to Target (TC), Tests on Target (TT), Tests Close to

Target Diversity (TCD), and Tests on Target Diversity (TTD) by Alternative

DeepAtash-LR Configurations

GA NSGA-II
Features TC [TCD] TT [TTD] TC [TCD] TT [TTD]

D
ar

k Curv-MLP 5.50 [0.50] 5.50 [0.44] 6.70 [0.63] 5.30 [0.34]
Curv-TurnCnt 4.30 [0.36] 3.70 [0.31] 7.40 [0.65] 6.40 [0.65]

G
re

y Curv-MLP 1.60 [0.19] 1.50 [0.12] 5.80 [0.71] 4.60 [0.47]
Curv-TurnCnt 2.10 [0.31] 0.50 [0.10] 4.10 [0.51] 0.70 [0.10]
TurnCnt-StdSA 2.40 [0.50] 2.30 [0.30] 3.70 [0.54] 1.70 [0.15]

W
h

it
e Curv-MLP 4.80 [0.36] 2.90 [0.26] 4.70 [0.36] 4.70 [0.44]

Curv-TurnCnt 4.10 [0.38] 3.30 [0.30] 7.80 [0.74] 7.20 [0.63]
TurnCnt-StdSA 0.00 [0.00] 0.00 [0.00] 2.00 [0.50] 0.00 [0.00]

AVG 3.10 [0.32] 2.46 [0.22] 5.27 [0.58] 3.82 [0.34]
In each row, boldface indicates the maximum of each of the four metrics; underline indicates
values significantly higher than the remaining ones (p-value < 0.05, non-negligible effect
size).

5.3 RQ2: Single vs Multi-objective

Table 5 reports the results achieved by the two configurations of DeepAtash-LR, which adopt
alternative search strategies. Specifically, we implemented GA as single-objective approach and
NSGA-II as multi-objective approach. For each evaluation scenario detailed in Section 4.4, the table
presents a row for every feature combination under consideration. It should be reminded that in the
dark cell scenario, we computed the metrics only for two (Curv-MLP and Curv-TurnCnt) feature
combinations, since there was not any dark cell in the TurnCnt-StdSA AMP (see Section 4).

For dark and grey targets, NSGA-II always produced the highest number of diverse inputs in
close proximity to the target (i.e., TC and TCD values).

For white targets, NSGA-II achieved the highest TC, TT, TCD and TTD values for two feature
combinations out of three. Remarkably, NSGA-II was the only DeepAtash-LR configuration able
to generate inputs in proximity of the white target for the TurnCnt-StdSA feature combination.

These findings highlight overall the effectiveness of both search strategies (DeepAtash-LR with
GA vs NSGA-II), with an advantage observed in favor of NSGA-II. The last row of Table 5 shows
that on average, NSGA-II generated a higher number of diverse misbehaviours both close to and
on the target cell.

The statistical significance of this performance difference was observed in all metrics, except for
the test on the target diversity (TTD) metric, for which both strategies achieved statistically com-
parable results. By employing the NSGA-II algorithm, our tool optimized multiple fitness functions
simultaneously. Such a multi-objective approach allowed for a more comprehensive exploration of
the feature space. Consequently, this led to an increased number of useful test inputs and provided
a diverse set of driving scenarios.

Summary: The multi-objective configuration of DeepAtash-LR generated a larger number

of inputs in close proximity to and exactly on the target cell compared to the single-objective

configuration. Moreover, the multi-objective configuration exhibited higher diversity of the

generated inputs.
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Table 6. RQ3 - Results Achieved by the Compared Tools

DeepAtash-LR DeepHyperion-CS
Features TC [TCD] TT [TTD] TC [TCD] TT [TTD]

D
ar

k Curv-MLP 6.70 [0.64] 5.30 [0.68] 0.90 [0.10] 0.10 [0.02]
Curv-TurnCnt 7.40 [0.79] 6.40 [0.78] 1.50 [0.40] 0.10 [0.02]

G
re

y Curv-MLP 5.80 [0.60] 4.60 [0.70] 2.30 [0.31] 0.10 [0.10]
Curv-TurnCnt 4.10 [0.55] 0.70 [0.10] 1.20 [0.2] 0.10 [0.05]
TurnCnt-StdSA 3.70 [0.70] 1.70 [0.50] 0.40 [0.25] 0.10 [0.10]

W
h

it
e Curv-MLP 4.70 [0.48] 4.70 [0.50] 1.00 [0.52] 0.00 [0.00]

Curv-TurnCnt 7.80 [0.97] 7.20 [0.90] 0.30 [0.12] 0.00 [0.00]
TurnCnt-StdSA 2.00 [0.50] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

AVG 4.86 [0.59] 3.62 [0.47] 0.95 [0.30] 0.06 [0.08]
Tests close to target (TC) and their diversity (TCD); tests on target (TT) and their diversity
(TTD). In each row, boldface indicates the maximum of each of the four metrics; underline
indicates values significantly higher than the remaining ones (p-value < 0.05, non-negligible
effect size).

5.4 RQ3: Comparison

Table 6 reports the results achieved by DeepAtash-LR and the existing approach DeepHyperion-
CS. In this comparison, we focused on the DeepAtash-LR configuration featuring the NSGA-II
multi-objective search strategy, as it had demonstrated superior performance in the previous re-
search question.

As indicated in the first two rows, for all dark targets, DeepAtash-LR demonstrated its
superiority by generating significantly more and more diverse inputs in close proximity to
and exactly on the target cell. Remarkably, for Curv-MLP and Curv-TurnCnt feature combina-
tions, DeepAtash-LR generated an average of 58.5× more misbehaviours on target compared to
DeepHyperion-CS.

For most of the grey targets, DeepAtash-LR and DeepHyperion-CS showed statistically com-
parable performance. Notably, DeepAtash-LR outperformed DeepHyperion-CS by generating a
significantly higher number of tests close and on the target for TurnCnt-StdSA and tests on the
target for the Curv-MLP feature combinations, along with achieving higher diversity. This perfor-
mance gap was statistically significant for TT (46× higher) and TTD (7× higher).

As regards targets for which DeepHyperion-CS was unable to generate failure-inducing in-
puts (i.e., white targets), DeepAtash-LR produced an average of up to 7.20 such inputs. This
highlights DeepAtash-LR’s ability to successfully cover regions in the feature space that were
completely unexplored by DeepHyperion-CS. Specifically, for the TurnCnt-StdSA feature combi-
nation, DeepHyperion-CS failed to generate any misbehaviours even in close proximity to the
target, while DeepAtash-LR succeeded in producing an average of two diverse misbehaviour-
inducing inputs.

The comparisons carried out across various evaluation scenarios consistently show that
DeepAtash-LR outperformed DeepHyperion-CS, with statistically significant superiority ob-
served in 60% of these comparisons. In the final row of Table 6, it is evident that, on average,
DeepAtash-LR achieved better results than DeepHyperion-CS. The statistical significance of this
performance difference was observed across all the considered metrics. In particular, DeepAtash-
LR generated an impressive 60 times more inputs for the selected targets, underlining its substan-
tial advantage. Our results demonstrate the capability of DeepAtash-LR in generating test inputs
in feature space areas where the test generator DeepHyperion-CS can generate few or no inputs.
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Table 7. RQ4 - Mean Absolute Error (MAE), Mean Squared Error (MSE) and

Success Rate (SR) on the Original Test Set and on the Test Set Generated by

DeepAtash-LR, Before and After Fine Tuning the DL System with the Training

Partition of Generated Inputs

Test Set DA Test Set
Features MAE before MAE after MAE before MAE after
Curv-MLP

0.0245
0.0186 0.1035 0.0797

Curv-TurnCnt 0.0192 0.1499 0.1026

TurnCnt-StdSA 0.0193 0.1219 0.1012

MSE before MSE after MSE before MSE after
Curv-MLP

0.0006
0.0003 0.0150 0.0095

Curv-TurnCnt 0.0003 0.0301 0.0139

TurnCnt-StdSA 0.0003 0.0222 0.0159

SR before SR after SR before SR after
Curv-MLP

1.00

0.99
0.00

0.75

Curv-TurnCnt 0.93 0.57

TurnCnt-StdSA 1.00 0.58

In each row, boldface indicates the minimum for MAE/MSE and maximum for SR;
underline indicates values significantly lower/higher than the remaining ones (p-value
< 0.05, non-negligible effect size).

Summary: DeepAtash-LR outperforms the state-of-the-art tool DeepHyperion-CS in gen-

erating misbehaviour-inducing inputs with specific target feature value combinations.

DeepAtash-LR can effectively explore crucial areas of the feature space of the DL system,

which might be overlooked by DeepHyperion-CS.

5.5 RQ4: Usefulness

Table 7 shows the improvements of the driving agent, which were achieved through fine tuning
using traininдDA, the training partition of the inputs generated by DeepAtash-LR. The improve-
ment is assessed by using two different test sets: (1) the test set made of 10 random roads and
(2) testDA, the test set partition generated by DeepAtash-LR. The “before” columns display the
performance of the DL system on these two test sets; the “after” columns display the performance
of the fine-tuned DL system.

Since we selected a high-quality ADS, its initial MSE on the original test set was quite low.
Consequently, it was able to perfectly handle the driving task on such roads, achieving a SR of 1.
On the other hand, the ADS’s initial MSE on testDA was higher and its success rate was obviously
0, as this set consisted of misbehaviour-inducing inputs.

Table 7 (top) and (middle) report the results of the offline evaluation, in terms of MAE and MSE.
Across all feature combinations, the fine-tuned ADS exhibited an improvement in its prediction
accuracy. In fact, both MAE and MSE significantly diminished after the fine tuning process, for
both the test set and testDA. Quite surprisingly, we improved the MAE/MSE also on the original
test set despite the system’s initial high quality. Therefore, we not only witnessed the absence
of any signs of regression during the offline validation, but also noticed a slight improvement
in MAE/MSE on the original test set. This might be due to an increased generalization capability
induced by the additional training on inputs with under-represented feature combinations. Table 7
(bottom) reports the results of the evaluation in the simulation loop, in terms of SR. After fine
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tuning, we notice minimal regression in terms of the system’s ability to successfully complete the
driving task. In fact, the SR on the test set remains notably high and is statistically comparable to
the perfect score achieved before the fine tuning process. On the other hand, the fine-tuned ADS
demonstrated a significant improvement in its ability to drive on the roads belonging to testDA

(i.e., SR = 63% on average).

Summary: DeepAtash-LR is useful to improve the performance of the ADS through fine tun-

ing, by targeting feature combinations under-represented or unseen during development. The

inputs generated by our tool can serve as a diverse training set, facilitating the enhancement

of the performance of the ADS without compromising its success rate.

5.6 Threats to Validity

External Validity: The selection of the experimental subject may pose a potential threat to ex-
ternal validity. Nevertheless, we mitigated this concern by choosing an ADS widely employed in
SE research and adopting a driving simulator with precise physics simulation capabilities. Further-
more, we verified that our chosen subject could successfully manage all the driving tasks within a
randomly generated test set.

The choice of targets introduces another potential external validity threat, as the obtained results
may not necessarily generalize to different target selections. To address and mitigate this threat,
we adopted a strategy for selecting three distinct types of targets, each corresponding to different
usage scenarios.
Internal Validity: The usage of LR and DNN may not be representative of all possible surrogate
models. LRs have small number of parameters and can be trained with small sample of training
data. DNNs are more general, as they can approximate any non linear function, but they have
more parameters to train and, correspondingly, require more training data and time. Therefore, we
believe that these two models cover the two most interesting classes of surrogate models, although
we acknowledge that alternatives do exist.
Conclusion Validity: The stochastic nature of DL-based ADSs and search-based approaches may
affect the results. To address this concern, we adopted a rigorous experimental methodology by
running each experiment multiple times and conducting standard statistical tests to assess the
significance of the obtained results.
Reproducibility: Our results can be replicated using the replication package and experimental
data we have made available for DeepAtash-LR [63, 64].

6 RELATED WORK

Although focused test case generation has been a subject of extensive study and application in the
context of software testing, its application to ADSs is a new field that has been explored only in
our previous work, DeepAtash [62]. Hence, we organize the related works according to two main
themes: focused test generation for traditional software and (unfocused) test generation specifi-
cally tailored for ADSs.

6.1 Automated Focused Test Generation

In the SE literature, numerous approaches have been proposed for the automated generation of
test inputs, especially for software testing purposes. The main goal of these approaches is to ef-
ficiently exercise the functionality of the software under test, while also aiming to reveal any
fault that may exist within the software [59]. Among these approaches, search-based techniques
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have demonstrated their effectiveness and efficiency, particularly when dealing with problems that
have complex input spaces. Indeed, search-based methods are well-suited for scenarios where an
exhaustive or symbolic analysis would be impractical due to the size of the input space and the
complexity of the involved input constraints [37].

The empirical study conducted by Shamshiri et al. [49] highlighted a significant challenge in
software testing. Despite achieving extensive code coverage, many state-of-the-art test generators
still experienced a low fault detection rate. The main reason for this issue is that merely covering
faulty code is often insufficient to trigger a failure, as specific inputs or scenarios are required to
expose the faults. Focused test generation approaches offer a promising solution to this problem. By
generating diverse test inputs that target specific parts of the software under test, these approaches
can effectively increase the likelihood of triggering failures.

Alipour et al. [4] introduce directed swarm testing, which enhances traditional swarm testing
methods by generating tests with an increased probability of covering specific source code targets.
By intelligently directing the swarm testing process, this approach aims to prioritize the explo-
ration of critical areas in the software code, improving the effectiveness of test case generation.

Gotlieb and Petit [20] propose a technique that leverages constraint solving to achieve a specific
control flow path coverage for the program under test. By formulating constraints based on the
desired control flow path and using a constraint solver, this approach can systematically generate
test cases that traverse the specified path.

The DFT (Diversified Focused Testing) approach proposed by Menéndez et al. [38] presents
a testing strategy that combines model checking and search-based testing techniques. The main
objective of this approach is to generate test inputs that effectively reach specific program points
of interest while simultaneously promoting input diversity.

The IFRIT approach, introduced by Romdhana et al. [47], is a novel testing technique that har-
nesses the power of Reinforcement Learning (RL) to generate diverse test inputs targeting
specific points in the program under test. IFRIT’s RL agent rewards the generated inputs if they
are diverse from the previously generated solutions and they are able to cover the desired program
locations.

While the aforementioned approaches were proposed for traditional software, we tailor Deep-
Atash to the unique characteristics and challenges of ADSs. In particular, we use a surrogate
model to minimize the need for executing expensive simulations to get the fitness values required
by search-based algorithms.

6.2 Test Generation for Autonomous Driving Systems

Test generation is crucial for ensuring the reliability of ADSs. These systems operate in complex
and dynamic environments, making it challenging to test all possible scenarios. Several techniques
and approaches have been developed to address this challenge.

DeepXplore is a test generator guided by neuron coverage, i.e., the number of activated neu-
rons. In particular, a neuron is considered activated if its output value is higher than a predefined
threshold. DeepXplore exclusively tests ADSs in an offline setting, i.e., maximizing the MSE of
the steering angle prediction. Consequently, it may generate false positives for inputs that do not
result in real system failures.

Other test generators for ADSs, such as AsFault [19], DeepJanus [46], DoppelTest [26], or
GenBo [12], operate within an online setting, i.e., they simulate the behaviour of the vehicle in the
scenarios they generate, as done by DeepAtash-LR. Unlike focused test generators, these tools do
not explicitly target specific feature space areas. Moreover, they may spend considerable time in
performing unnecessary simulations, since they lack the aid of a surrogate model.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 6, Article 152. Publication date: June 2024.



152:28 T. Zohdinasab et al.

NSGAII-DT [2] is a test generator designed for vision-based control systems. Similarly to
DeepAtash-LR, it utilizes evolutionary algorithms. However, it targets areas within the input
space that are likely to trigger system misbehaviours, while our tool, in contrast, is designed to
target pre-selected feature value combinations with failure inducing and diverse inputs. Explicitly
pre-selecting the targets, allows DeepAtash-LR to explore the critical feature values that lead to
misbehaviours, stress the system with non-critical features, or explore the features values that
are not covered yet. NSGAII-DT is guided by decision trees that are constructed based on critical
combinations of structural features learned throughout the exploration process. While we also
employ learning-based surrogate models trained during the search, ours are used for predicting
fitness or behavioural feature values, in order to efficiently explore the input space, rather than for
classifying the criticality of a feature combination as NSGAII-DT does.

AmbieGen [29] is a search-based framework for generating diverse misbehaviour-inducing test
scenarios for ADSs. Like DeepAtash-LR, it explicitly promotes test diversity and employs a sim-
plified system model to approximate results without running time-consuming simulations.

SAMOTA (Surrogate-Assisted Many-Objective Testing Approach) [23] is a testing ap-
proach that combines many-objective search and surrogate-assisted optimization techniques.
Its approach consists of two search phases, global search using global surrogate models to
explore the search space and capture the global fitness landscape, and local search using local sur-
rogate models to exploit promising areas found by the global search. Unlike our approach, each
objective of SAMOTA is a safety violation, and the specific features of the misbehaviour-inducing
inputs are not relevant for SAMOTA. More specifically, the goal of SAMOTA is to trigger a safety
violation with any combination of driving scenario features that the surrogate model predicts as
highly likely to produce a misbehaviour. On the other hand, DeepAtash-LR’s main objective is
to generate driving scenarios that are focused on a specific feature combination of interest, while
triggering a misbehaviour is a secondary objective of the search process. While both search pro-
cesses benefit from a surrogate model, which makes them more efficient, the role of the surrogate
model in the two search algorithms is different, as in one case (SAMOTA) it aims primarily at ex-
posing misbehaviours, while in the other (DeepAtash-LR) it aims primarily at covering a specific
(e.g., previously non-visited) feature map cell. The authors of SAMOTA [23] show the usefulness
of a surrogate model for misbehaviour exposure; we show its usefulness for focused feature map
coverage (the latter does not necessarily descend from the former).

Among the testing approaches for ADSs mentioned earlier, some of them adopt surrogate mod-
els to increase test generation efficiency and all of them take into account various aspects such
as the environment and dynamic elements. However, none of them specifically focuses the search
for test scenarios on interesting, human-interpretable combinations of structural and behavioural
features. In contrast, DeepAtash-LR stands out as the first surrogate-assisted tool that generates
test inputs focused on a specific combination of human-interpretable features.

7 CONCLUSIONS AND FUTURE WORK

In this work, we proposed DeepAtash-LR, a novel focused test generator for ADSs. DeepAtash-LR
employs a surrogate model as a proxy for an actual system’s execution, thus sidestepping the need
for resource-intensive evaluations, which would involve complete simulations of the driving tasks
on the candidate test scenarios. Our empirical study shows that the evaluation using surrogate
model implemented within DeepAtash-LR significantly improves the effectiveness of DeepAtash
in generating misbehaviour-inducing inputs in the proximity of the target features. Moreover, we
obtained empirical evidence showing that the focused inputs generated by DeepAtash-LR can
be useful for improving the ADS through fine tuning. Despite the positive results achieved by
integrating the Linear Regression surrogate model into our focused test generation, we plan to
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explore alternative surrogate models and algorithms in the future. For example, we may consider
retraining the surrogate model after regular intervals with new data.

In our future work, we also plan to generalize our results to additional ADSs, including industrial
ones. Moreover, we plan to extend our approach to other cyber-physical systems, such as umanned
aerial vehicles, e.g., drones.
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