
DeepAtash: Focused Test Generation for Deep Learning Systems
Tahereh Zohdinasab

Università della Svizzera Italiana
Lugano, Switzerland

tahereh.zohdinasab@usi.ch

Vincenzo Riccio
Università della Svizzera Italiana

Lugano, Switzerland
vincenzo.riccio@usi.ch

Paolo Tonella
Università della Svizzera Italiana

Lugano, Switzerland
paolo.tonella@usi.ch

ABSTRACT

When deployed in the operation environment, Deep Learning (DL)
systems often experience the so-called development to operation
(dev2op) data shift, which causes a lower prediction accuracy on
field data as compared to the one measured on the test set during
development. To address the dev2op shift, developers must obtain
new data with the newly observed features, as these are under-
represented in the train/test set, and must use them to fine tune the
DL model, so as to reach the desired accuracy level.

In this paper, we address the issue of acquiring new data with
the specific features observed in operation, which caused a dev2op
shift, by proposing DeepAtash, a novel search-based focused test-
ing approach for DL systems. DeepAtash targets a cell in the fea-
ture space, defined as a combination of feature ranges, to generate
misbehaviour-inducing inputs with predefined features. Experimen-
tal results show that DeepAtash was able to generate up to 29×
more targeted, failure-inducing inputs than the baseline approach.
The inputs generated by DeepAtash were useful to significantly
improve the quality of the original DL systems through fine tuning
not only on data with the targeted features, but quite surprisingly
also on inputs drawn from the original distribution.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

software testing, deep learning, search based software engineering
ACM Reference Format:

Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella. 2023. DeepAtash:
Focused Test Generation for Deep Learning Systems. In Proceedings of

the 32nd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, United States. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598109

1 INTRODUCTION

Deep Learning (DL) systems are extremely relevant to the Software
Engineering (SE) field, due to their ability to learn how to perform
complex tasks from training data [44]. Such ability can be a mixed
blessing, as DL systems may exhibit unexpected behaviours on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598109

Figure 1: Feature map for a handwritten digit classifier. The

axes quantify orientation and luminosity of the digits. The

cells report the probability of exposing a misbehaviour for

the corresponding feature value combinations, i.e., darker

colors correspond to higher misbehaviour probabilities.

inputs with features that are missing or underrepresented in the
training dataset [28]. As an example, a digit classifier may produce
a wrong prediction when exercised with a “5” digit tilted to the left,
if this is not sufficiently represented in the training set.

DL systems should be carefully tested with appropriate tech-
niques that generate data beyond the datasets used at development
time [58, 74]. To this aim, researchers proposed test generators
specific to DL systems, able to automatically produce misbehaviour-
inducing inputs [13, 14, 23, 40, 41, 52, 59, 67, 72]. However, when
developers observe misbehaviour inducing inputs in the field, they
have to to understand the reasons behind the misbehaviours (e.g.,
what input features are underrepresented and cause amisbehaviour)
[56, 66] and acquire or generate new data with such features.

An approach to automatically group misbehaving inputs based
on human-interpretable features is provided by feature maps [76].
A feature map depicts the feature space defined by 𝑁 relevant di-
mensions of variation (i.e., the map axes, each corresponding to
an input feature). Test inputs are placed in a feature map based on
their feature values. Feature maps can report useful details about a
test set, such as the feature value combinations corresponding to
tests that triggered misbehaviours or the probability of observing a

https://orcid.org/0000-0002-0191-1151
https://orcid.org/0000-0002-6229-8231
https://orcid.org/0000-0003-3088-0339
https://doi.org/10.1145/3597926.3598109
https://doi.org/10.1145/3597926.3598109

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella

misbehaviour for each feature combination. Figure 1 shows an in-
stance of bi-dimensional feature map for a classifier of handwritten
digits from the MNIST (Modified National Institute of Standards
and Technology) database [38]. This feature map is defined by the
digit rotation (Orientation) and the stroke’s boldness (Luminosi-
ty) and represents, for each combination of feature values (a map
cell), the corresponding probability of exposing a misbehaviour,
i.e., darker colors correspond to higher probabilities. In the exam-
ple of Figure 1, the digit classifier under test is likely to fail for
digits tilted to the left or for thin digits tilted to the right. Feature
maps are human-interpretable and have been used in previous SE
research, e.g., for test generation [76, 77], test selection [49], and
test adequacy assessment [9].

At testing time, feature maps highlight areas of the feature space
that are not adequately covered [9], while, during operation, critical
feature values may be observed that are under-represented in the
train/test datasets used at development time. For them, new and
diverse input data need to be collected and labelled manually [22].
Therefore, testers will have to find multiple misbehaviour-inducing
inputs, focusing on specific feature combinations, as these addi-
tional inputs can be used to improve the DL system quality delivered
to production, by fine tuning the DL models on such new data.

This paper introduces a novel way to generate misbehaviour-
inducing inputs with specific, user-defined feature values. Our ap-
proach is the first focused input generator for DL based systems
targeting human-interpretable features. It can be employed to col-
lect new diverse inputs with critical, misbehaviour-inducing char-
acteristics (1 in Figure 1), to stress the system to expose failures
with inputs that do not seem critical (2), or to generate new data
with underrepresented or unseen feature values (3). An example
of usage scenario is a DL system that, once deployed in operation,
has to handle frequently feature combinations never (3) or rarely
(1 , 2) observed at development time (this is also called the de-
velopment to operation, dev2op, shift [22]). To test such feature
combinations, we propose DeepAtash, a search-based focused test
generator for DL systems. DeepAtash can be configured with alter-
native search strategies (single or multi-objective) and sparseness
metrics. It takes as input the desired target feature value ranges
and it optimizes both the generated input sparseness and the input
closeness to the target in the feature map.

We evaluated DeepAtash on two different classification prob-
lems (recognition of handwritten digits and sentiment analysis of
movie reviews). For both problems, results show that DeepAtash
is effective at generating diverse failure-inducing test inputs within
the target feature map cell in different usage scenarios. The in-
puts generated by DeepAtash have been used to fine-tune the
DL models under study and improve their performance on under-
represented feature combinations, which were initially not handled
at all (0% accuracy) and reached approximately 99% accuracy after
fine-tuning, with no regressions.

To encourage open research, we release the code of DeepAtash
and the experimental data at:

https://github.com/testingautomated-usi/deepatash

Algorithm 1: DeepAtash’s Focused Test Generation
Input :𝐵: execution budget

targetCell: target feature value ranges
archivesize: target archive size
S: set of input seeds
popsize: population size

Output :𝐴: archive of test inputs in the target cell
1 A← ∅;
2 population P ← InitialisePopulation(𝑆 , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒);
3 Evaluate(𝑃 , 𝐴, targetCell);
4 while elapsedBudget < 𝐵 do

5 offspring Q← 𝑃 ;
6 foreach 𝑞 ∈ Q do

7 𝑞←Mutate(𝑞) ;
8 end

// substitute the worst individuals

9 P ← Repopulation(𝑃 , 𝑆 , 𝐴);
10 Evaluate(𝑃 ∪𝑄 , 𝐴, targetCell);
11 A← UpdateArchive(𝑃 ∪𝑄 , archiveSize, targetCell);
12 P ← Select(𝑃 ∪𝑄 , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒);
13 end

14 A← FilterMisbehaviours(A);
15 return (A)

2 THE DEEPATASH TECHNIQUE

DeepAtash aims to generate misbehaviour-inducing test inputs
with characteristics defined by the user, i.e., inputs belonging to a
predefined feature map cell that trigger an unexpected behaviour.
As a secondary goal, it maximises the sparseness among the gen-
erated solutions to obtain diverse inputs. Given the desired tar-
get ranges of feature values, referred to as the target cell (e.g.,
[1 : 5] × [10 : 15] if we want the first feature 𝑓1 to be between
1 and 5 and the second 𝑓2 between 10 and 15), DeepAtash directs
the generation of new inputs toward the feature subspace defined
by these values. DeepAtash adopts evolutionary search to generate
inputs that: (1) are close to the target cell; (2) are diverse from the
already found solutions; and (3) trigger a misbehaviour of the DL
system. It iteratively manipulates an initial set of inputs (called
seeds) until they fall into or near to the target cell. The evolution
is guided by fitness functions representing the closeness to misbe-
haviour, the distance to the target cell and the distance from the
previously found solutions.

Algorithm 1 outlines the high-level steps of our focused test
input generation technique. The algorithm starts by initialising
an empty archive A (line 1), which will store the best test inputs
generated during the search, i.e., the most sparse inputs with feature
values inside or close to the target ranges.

Function InitialisePopulation (line 2) instantiates an initial
population P with the desired number of individuals (popsize), by
drawing elements from an initial pool of seeds S provided as input.
Usually, 𝑆 is a subset of the test set available with the DL system
under test. The warm-up phase is completeted by determining the
fitness values of all the individuals of the initial population (line 3).

https://github.com/testingautomated-usi/deepatash

DeepAtash: Focused Test Generation for Deep Learning Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

The main evolutionary loop is performed until the termination
condition is satisfied (lines 4-13). At each iteration, the population
is mutated by genetic operators to produce its offspring Q (lines
5-8). The worst individuals of the population are replaced by the Re-
population operator, which generates new inputs from the initial
pool of seeds S (line 9). Repopulation takes as input the archive 𝐴
to avoid selecting seeds already used to produce individuals stored
in the current archive 𝐴.

Function Evaluate calculates the fitness of the current popula-
tion P and its offspring Q (line 10). The inputs close to the target
cell, i.e., those whose distance from the target cell is smaller than a
threshold, are stored in the archive A, if they are better than the
previously discovered solutions (line 11). Then, the popsize fittest in-
dividuals are selected for the next generation by the Select function
(line 12). When optimizing multiple fitness functions at the same
time, ranking of individuals for selection is based on Pareto domi-
nance and crowding distance, as prescribed by the NSGA-II multi-
objective optimization algorithm [12].When the execution budget B
is elapsed, the algorithm returns the misbehaviour-inducing inputs
stored in the archive as final outcome (lines 14-15).

In the rest of this Section, we describe the key aspects of Deep-
Atash and how we applied it to the handwritten digit recognition
and movie review sentiment analysis tasks.

2.1 Input Representation

DeepAtash performs semantic-based input generation, i.e., it lever-
ages semantic information about the inputs (e.g., digit shape or
sentiment polarity of a word), rather than simply corrupting them
(e.g., changing pixel values or modifying letters in a word). Exam-
ples of semantic-based approaches are model-based techniques,
which are standard practice in several domains, including safety-
critical ones such as automotive [36, 69]. Semantic-based test input
generation has been already successfully applied to DL system
testing [1–3, 57, 59, 76]. In general, it is applicable to any domain
for which the semantic of the input data can be modeled. For this
reason, in this work we consider two domains for which seman-
tic models are available: handwritten digit recognition and movie
review sentiment analysis.

For handwritten digit recognition, test inputs are images in the
MNIST database format [38]. In particular, digits are encoded as 28
× 28 images with greyscale levels that range from 0 to 255. Deep-
Atash models each digit as a sequence of control points that define
a Bézier curve, according to the Scalable Vector Graphics (SVG)
representation. To this aim, DeepAtash leverages the operations
performed by the Potrace algorithm [63], which vectorises a binary
image by drawing a smooth contour made of Bézier segments.

For movie review sentiment analysis, test inputs are texts from
the IMDB database [43]. DeepAtash represents each text as a to-
kenised padded sequence with a predefined length, i.e., a tokeniser
converts text inputs to the corresponding sequence of tokens and
then applies padding to have vectors of the same length. Deep-
Atash obtains the semantic information of a text by associating
each of its words to the corresponding polarity, obtained from the
English Opinion Lexicon [26] which contains a list of words with
positive and negative polarity. The words that are neither positive
nor negative are considered neutral.

2.2 Fitness Functions

We use three fitness functions to guide DeepAtash’s focused gen-
eration. They quantify: (1) the distance of the test input from the
target cell; (2) the closeness of the DL system to exhibiting a misbe-
haviour when executing the given test input; and, (3) the distance of
the input from the previously found solutions (i.e., its sparseness).

2.2.1 Distance from the Target Cell. To measure the distance of
an individual 𝑥 from the target cell 𝑐 , DeepAtash computes the
Manhattan distance between the cell containing the individual 𝑥
and the target cell. This fitness function is minimised.

minfitness1 (𝑥) = min dist (𝑥, 𝑐) (1)

Given a target cell 𝑐 = [𝑙1 :𝑢1]×. . .×[𝑙𝑁 :𝑢𝑁], with𝑁 the number of
features being considered (usually 2), the range size 𝑠𝑖 = 𝑢𝑖−𝑙𝑖 along
each dimension 𝑓𝑖 (with 𝑖 ∈ {1, . . . , 𝑁 }) determines the Manhattan
distance of a given individual 𝑥 from the target cell 𝑐 , according to
the following equations:

𝑑 (𝑥𝑖 , 𝑐𝑖) =

⌈
𝑙𝑖−𝑥.𝑓𝑖

𝑠𝑖

⌉
, if 𝑥 .𝑓𝑖 < 𝑙𝑖

0, if 𝑙𝑖 ≤ 𝑥 .𝑓𝑖 < 𝑢𝑖⌈
𝑥.𝑓𝑖−𝑢𝑖

𝑠𝑖

⌉
, if 𝑥 .𝑓𝑖 > 𝑢𝑖

1, if 𝑥 .𝑓𝑖 = 𝑢𝑖

(2)

𝑑 (𝑥, 𝑐) =

𝑁∑︁
𝑖=1

𝑑 (𝑥𝑖 , 𝑐𝑖) (3)

Along each dimension 𝑖 , the difference between the individual’s
coordinate 𝑥 .𝑓𝑖 and the cell’s lower/upper bound (𝑙𝑖 or 𝑢𝑖), divided
by the cell size 𝑠𝑖 , gives the number of cells that separate 𝑥 and 𝑐
along 𝑓𝑖 (the value is rounded up, to get an integer). The sum of
the number of separating cells across all dimensions corresponds
to the Manhattan distance between 𝑥 and 𝑐 . Let us consider for
example a target cell 𝑐 = [2 :6] × [6 :8] and a candidate solution 𝑥

whose feature values are 𝑥 .𝑓1 = 8, 𝑥 .𝑓2 = 3. The Manhattan distance
between 𝑥 and 𝑐 is hence ⌈(8 − 6)/4⌉ + ⌈(6 − 3)/2⌉ = 1 + 2 = 3.

2.2.2 Closeness to Misbehaviour. DeepAtash aims to generate test
inputs that trigger misbehaviours of the DL system under test.
Therefore, it promotes inputs that are more likely to trigger a mis-
behaviour by minimising a problem-specific fitness function which
measures how close the DL system is to misbehave, when exercised
with the evaluated input.

min fitness2 (𝑥) = min evaluateBehaviour (𝑥) (4)

For the handwritten digit recognition problem, we exploit the
activation levels of the classifier’s output softmax layer, since they
can be interpreted as a confidence level assigned to each of the
possible classes [20], i.e., the predicted class corresponds to the
one with highest confidence. As a fitness function, DeepAtash
considers the difference between the confidence level associated to
the expected class (which corresponds to the expected behaviour)
and the maximum confidence level associated to any other class. In
this way, the fitness value decreases when the system becomes less
confident towards the expected class and more confident towards
one of the other classes, while it assumes a negative value when
the input is misclassified.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella

The movie review sentiment analysis problem has two classes,
i.e., negative and positive sentiments. Therefore, we consider the
fitness as the difference between the confidence level associated to
the expected class and the one associated to the other class.

2.2.3 Sparseness. An effective focused test input generator should
ensure that the inputs found are different among them, thus pro-
viding a richer set of execution scenarios than a mere repetition
of the same one. To achieve this goal, DeepAtash maximises a
fitness function which measures how different an input is from the
solutions already found during the search. More specifically, Deep-
Atash computes the sparseness of the individual x with respect to
the ones in the archive A as follows:

max fitness3 (𝑥) = max spars(𝑥,𝐴) (5)

Function spars measures the minimum distance of 𝑥 from the
solutions in the archive𝐴:min𝑦∈𝐴,𝑦≠𝑥 dist(𝑥,𝑦). The distance func-
tion dist is computed on pairs of inputs and is domain-specific.

Since different distance functionsmay lead to different results, for
the digit recognition and movie review sentiment analysis problems,
we considered alternative metrics: input space, explanation space,
and latent space sparseness.

Input space sparseness measures distances between inputs in
the space defined by the input elements. For handwritten digit recog-
nition, it is computed as the Euclidean distance between pairs of
image vectors. This metric is the most widely used in the literature
due to its simplicity and has been already successfully applied to
test image-based DL systems [23, 59, 76]. For movie review senti-

ment analysis, sparseness is computed as the Levenshtein distance
between pairs of text input strings [39, 53, 71].

Computing distances in such high-dimensional spaces is ineffi-
cient and suffers from scalability problems. High-dimensional and
sparse spaces naturally hinder the search from finding similarity
between data and contain information that is not relevant to the
prediction of the DL system, i.e. they are affected by the curse of
dimensionality [7].

Explanation sparseness leverages Integrated Gradients [65], an
explainable AI technique [68], which highlights the pixels/words
of the original image/text that contribute the most to the DL sys-
tem’s prediction in a so-called heatmap, as in the one shown in Fig-
ure 2. Then, we compute the Euclidean distance between pairs
of heatmaps. While handwritten digit images have the same size,
movie reviews may have different lengths. Therefore, we generate a
vector of size 𝑆 , corresponding to the size of the vocabulary used by
the tokeniser, where each vector component 𝑒𝑖 is the contribution
value of the 𝑖-th word.

Explanation sparseness is still based on the original, high dimen-
sional input space, but it focuses on the relevant part of the inputs
by replacing inputs values with heatmap values.

Latent space sparseness measures distances between inputs
in the latent space. For digit recognition, it is defined on the la-
tent vectors produced by an autoencoder. Autoencoders are neural
networks trained to learn a representation of the input data (the
encoding or latent space) that has a lower dimensionality than the
original input space, but retains most of the original information
and discards noise. In this way, it is still possible to reconstruct the
input in the original input space starting from its latent vector. To

Figure 2: Explanatory heatmaps generated by the Integrated

Gradients technique. (a) A heatmap for a sample digit 5 is

shown, with red pixels highlighting the parts of the digit

that contribute more to the predicted label; (b) A heatmap

for sample text is presented, green shades highlight thewords

contributing to the positive sentiment, while red shades high-

light the words contributing to the negative sentiment.

measure latent space diversity, we train a Variational AutoEncoder
(VAE), a particular autoencoder architecture that maps the original
image to a latent vector of Gaussian random variables by estimat-
ing the mean and the variance of each latent vector variable. To
compute the distance between two handwritten digit images, our
latent space diversity metric uses the Euclidean distance between
the means of the latent vector variables.

For movie review sentiment analysis, the latent space sparseness
is defined on the latent vectors generated by a Doc2Vec model [37],
which is an unsupervised DL algorithm for representing documents
as vectors in a lower-dimensional space. More specifically, Doc2Vec
represents each document as a single vector which encapsulates
the semantics of the whole document.

Latent space sparseness tackles the issues of high-dimensional
and noisy input spaces by focusing on lower-dimensional represen-
tations of the relevant information carried by the inputs.

2.3 Archive of Solutions

The archive of solutions stores the best individuals encountered
during the search and, at the end of the last search iteration, it
contains the final solutions. The archive is particularly useful to
prevent the cycling phenomenon, i.e., when the search moves from
one cell of the feature space to another and back again, with no
memory of the cells it has already explored [48].

The UpdateArchive function manages the archive and is de-
scribed inAlgorithm 2.When the archive is not full, all the candidate
individuals placed on target or in the neighbouring feature map
cells, i.e. those with a distance to the target cell lower than 1, are
included into the archive (lines 2-4). Otherwise, if the archive is
full, the new candidate input competes with the worst individual
in the archive based on their values of fitness1, fitness2 and fitness3.
The worst individual in the archive is the one with the highest dis-
tance to the target and (for equal distances to the target) the lowest
sparseness (line 6). If the candidate individual has lower distance
to the target than the worst archived individual, UpdateArchive
replaces the former with the latter within the archive (lines 7-9).
When the compared inputs have equal distance to the target, the
algorithm evaluates their closeness to misbehaviour and keeps in
the archive the best one, which is closer to exposing a misbehaviour

DeepAtash: Focused Test Generation for Deep Learning Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Algorithm 2: The UpdateArchive function
Input :P : population

archiveSize: target size of the archive A
targetCell: target feature value ranges

1 foreach 𝑝 ∈ P do

2 if dist(𝑝 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑒𝑙𝑙) ≤ 1 then

3 if 𝐴 is not full and 𝑝 ∉ 𝐴 then

4 A.insert(𝑝) ;
5 else

6 𝑖𝑛𝑑 ← getWorstIndividual(𝐴);
7 if dist(𝑝 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑒𝑙𝑙) < dist(𝑖𝑛𝑑 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑒𝑙𝑙)

then

8 𝐴.insert(𝑝) ;
9 𝐴.remove(𝑖𝑛𝑑) ;

10 else

11 if dist(𝑝 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑒𝑙𝑙) ==

12 dist(𝑖𝑛𝑑 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑒𝑙𝑙) then

13 if 𝑝 .behaviour < 𝑖𝑛𝑑 .behaviour then

14 𝐴.insert(𝑝) ;
15 𝐴.remove(𝑖𝑛𝑑) ;
16 else

17 if 𝑝 .behaviour == 𝑖𝑛𝑑 .behaviour &
𝑝 .spars > 𝑖𝑛𝑑 .spars then

18 𝐴.insert(𝑝) ;
19 𝐴.remove(𝑖𝑛𝑑) ;
20 end

21 end

22 end

23 end

24 end

25 end

26 end

(lines 11-15). If the compared individuals have the same distance to
the target and to a misbehaviour, they compete on the basis of their
sparseness: the sparser one is kept, while the other is discarded
(lines 17-19).

Since the archive may contain correctly-behaving inputs, the Fil-
terMisbehaviours function is performed at the end of the search
to keep only misbehaviour-inducing inputs (see Algorithm 1).

2.4 Search Strategies

In this work, we evaluated two different search strategies for Deep-
Atash: Single-Objective search, which optimizes only the distance
to the target, and Multi-Objective search, which explicitly rewards
also the closeness to misbehaviour and the sparseness.

2.4.1 Single-Objective Search. As single-objective search strategy,
we adopt a Genetic Algorithm (GA) since it previously showed to
be very effective for test generation [18]. In particular, we adopt
a population-based GA that minimises the Manhattan distance to
the target cell. At each iteration, the best individuals in the current
population and the offspring are selected, based on their single
fitness value, to be part of the next population.

2.4.2 Multi-Objective Search. In this strategy, we cast the focused
test generation problem as a multi-objective search problem, by
optimising all three fitness functions defined in Section 2.2 at the
same time. In particular, we adopt the NSGA-II algorithm [12]
since it is widely used and it is reported to be very effective in
test case generation [2, 35, 45, 51, 57, 59]. NSGA-II applies Pareto
front analysis and promotes the solutions that are not dominated
by any other individual, i.e., those representing the best trade-offs
among the fitness functions. More precisely, a solution 𝑥 dominates
another solution 𝑦 if 𝑥 is not worse than 𝑦 in all fitness values,
and 𝑥 is strictly better than 𝑦 in at least one fitness value. The
final ranking of individuals is based on Pareto dominance (i.e.,
non dominated fronts are selected and removed from the solutions
one after the other) and crowding distance (i.e., within the same
Pareto front, distant individuals are selected), as recommended by
the NSGA-II multi-objective optimisation algorithm [12]. While
this search strategy comes with some overhead, as it computes
multiple fitness functions, dominance and crowding distances, it
may improve the archived solutions by explicitly promoting diverse
and misbehaviour-inducing inputs.

2.5 Population Management

DeepAtash starts its search from an initial population of size pop-
size, which is obtained by randomly choosing from a pool of inputs,
named seeds. Function InitialisePopulation (line 2 in Algorithm 1)
selects 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 different initial individuals among the seeds.

More specifically, for handwritten digit recognition, seeds are
all the inputs from the MNIST test set. Instead, for movie review

sentiment analysis, seeds are the inputs in the IMDB test set that
are closer than a predefined threshold maxDist to the target cell.
This choice is due to the large size of the IMDB test set: we consider
only the most promising inputs. We determinedmaxDist after some
preliminary DeepAtash runs with increasing values of maxDist

(starting from 0) and selected the minimum value that resulted in a
reasonable number of archived solutions (see Table 1). One common
issue in search-based approaches is that the exploration could get
stuck in local optima, despite the use of mechanisms to promote
diversity such as our fitness function in Equation 5. To mitigate
this situation and further vary the population, DeepAtash uses the
Repopulation operator, which replaces at each iteration a fraction
of the worst performing individuals in the current population, i.e.,
the individuals with the lowest fitness. The new individuals are
generated starting from a randomly chosen seed, which is not
already represented in the current population and the archive.

This genetic operator can be tuned by setting the repopulation
upperbound hyperparameter, that determines the range from which
the number of individuals to replace is uniformly sampled. As an
example, if the repopulation upper bound is set to 100, at each iter-
ation, a number nrep is uniformly sampled between 1 and 100, and
the nrep worst individuals in the current population are replaced
by newly generated individuals (see Table 1).

2.6 Mutation

A new input is obtained from an existing one by applying the Mu-
tate operator (line 7 in Algorithm 1). This operator applies a pertur-
bation to the original input by leveraging its semantic (i.e., the digit

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella

model control points or the word’s synonyms). For the handwritten
digit recognition problem, the mutation operator randomly chooses
a control point of the SVG model and applies a displacement to it
in the two-dimensional space. For the movie review sentiment anal-

ysis problem, we defined three mutation operators: (1) replacing
a word with its synonym obtained from Wordnet1; (2) adding an
"and" conjunction after an adjective, followed by a synonym of the
adjective; and (3) duplicating a sentence.

Each time an input is mutated, DeepAtash verifies that the mu-
tant complies with the ad hoc constraints to ensure that the input
still belongs to the input validity domain and preserves its original
label [60]. When the mutated individual is considered invalid it
is discarded and its parent is mutated again. For the handwritten
digit recognition problem, DeepAtash verifies that the Euclidean
distance between the mutant and the starting seed is greater than
0 and lower than 2. For the movie review sentiment analysis prob-
lem, the mutated individual is considered invalid if (1) the number
of sentiment words differs more than a threshold sentimentDist

from the initial one and (2) the proportion between positive and
negative words is substantially different from the initial one. To
validate such heuristic constraints, we manually inspected a set
of test inputs produced by DeepAtash and found that in all cases
label preservation and validity were confirmed. Therefore, we are
confident that misbehavior-inducing inputs are actually producing
misbehaviours with high probability. When moving to a different
domain, proper heuristic validation functions must be designed for
domain-specific mutation operators.

3 EXPERIMENTAL EVALUATION

3.1 Subject Systems

TheMNIST system for handwritten digit recognition and the IMDB
system for movie review sentiment analysis have been widely used
in the literature to evaluate testing techniques for DL systems [58,
74]. The MNIST system solves an image classification problem,
i.e., it recognises handwritten digits from theMNIST dataset [38].
It is a Deep Neural Network (DNN) that predicts which digit is
represented in a greyscale image. We considered the convolutional
DNN architecture provided by Keras [11] and trained it on the the
MNIST training set. In particular, we used its default configuration,
i.e. 12 epochs, batches of size 128, and a learning rate equal to 0.001,
which achieved 99.11% test accuracy. For our experiments, we used
three features defined for MNIST digits [76]: (1) Luminosity (Lum):
number of light pixels of the image, i.e., pixels whose value is above
127; (2) Orientation (Or): vertical orientation of the digit, obtained
by computing the angular coefficient of the linear regression of the
non-black pixels; (3) Moves (Mov): sum of the Euclidean distances
between pairs of consecutive sections of the digit.

The IMDB system solves a text classification problem, as it deter-
mines the sentiment of movie reviews from the IMDB dataset [42].
It is a DNN that predicts whether the review has positive or neg-
ative sentiment. We used a convolutional DNN architecture with
an embedding layer provided by Keras [50], which accepts as input
tokenised (with vocabulary size equals to 10K) and padded text
with length limited to 2K words. We trained the model on the IMDB

1https://wordnet.princeton.edu

training set with 10 epochs, batches of size 32 with early stopping,
and the Adam optimizer, achieving 88.19% test accuracy. For our
experiments, we used three features defined for IMDB movie re-
views: (1) Positive words count (Pos): number of words in the text
with positive polarity, obtained by counting the words tagged as
positive in the English Opinion Lexicon by Liu and Hu [26]; (2)
Negative words count (Neg): number of words in the text with nega-
tive polarity, obtained by counting the words tagged as negative in
the aforementioned lexicon; (3) Verb count (Verb): number of verbs
in the text, a proxy for the text complexity, computed by counting
the words with a verb tag, according to the part-of-speech tagging
performed by the NLTK library2.

3.2 Research Questions

The goal of our evaluation is to understand the effectiveness of our
approach in generating misbehaviour-inducing test inputs with the
desired features. In particular, we consider different possible config-
urations of DeepAtash, compare it with an existing state-of-the-art
test generator (DeepHyperion), and investigate the usefulness of
the generated test inputs. Therefore, we answer the following re-
search questions:

RQ1 (Effectiveness): Which DeepAtash configuration is the

most effective in generating focused test inputs?

As detailed in Sections 2.2 and 2.4, DeepAtash can be configured
with alternative search strategies (single- or multi-objective) and
distance metrics (sparseness can be measured on the input, latent
or explanation space). This RQ aims at comparing the effectiveness
of such six alternative configurations.

RQ2 (Comparison): How does DeepAtash compare with the

state of the art tool DeepHyperion?

In this RQ, we are interested in whether our focused approach is
more effective thanDeepHyperion in generating test inputs in prox-
imity of and within the target cell. We compare the best performing
DeepAtash configuration (obtained from RQ1) against DeepHype-
rion, as the latter is the only state-of-the-art test generator that
targets the feature space at large by means of an illumination search
algorithm. Unlike Active Learning techniques [55] or unguided test
generators, DeepHyperion tries to cover all feature combinations
and thus it is more likely to produce inputs on the selected target.
On the contrary, random techniques produce few or no inputs on
the target, making the comparison with DeepAtash impossible.

Actually, to the best of our knowledge, no state of the art DL test
generator is a focused test generator, capable of targeting a specific
region of the feature space. DeepHyperion [77] is a model-based
test generator that is applicable to MNIST and IMDB. DeepHyper-
ion explores the feature space using the same input representation
and mutation genetic operators as DeepAtash. Therefore, our ex-
perimental comparison can effectively rule out all confounding
factors and assess the actual contribution of our focused algorithm
in isolation.

RQ3 (Usefulness): Can the test inputs generated by DeepAtash

be used to improve the DL system under the test?

In this RQ, we aim to investigate the usefulness of DeepAtash
in a common DL usage scenario. We simulate a scenario in which a
dev2op data shift has been observed, i.e., a feature combination is

2Natural Language Toolkit - https://www.nltk.org

https://www.nltk.org

DeepAtash: Focused Test Generation for Deep Learning Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

frequently observed during operation, but it was scarcely (or not)
represented at development time. A tester can use DeepAtash to
target the feature values of interest and fine tune the DL system
with the generated tests inputs, in order to improve its quality
without introducing regressions.

3.2.1 Metrics: We evaluate the focused test generator’s effective-
ness by measuring the Tests Close to the target (TC) as the number
of generated failure-inducing inputs in the proximity of the target
feature map’s cell, i.e. the solutions in the archive whose distances
to the target are lower than or equal to 1. Moreover, we assess the
generator’s ability to reach the target by computing the number of
Tests on Target (TT), i.e., the number of failure-inducing inputs that
fall within the boundaries of the target cell.

For a given target feature map cell, we prefer a generator that
produces diversified inputs. To evaluate this aspect, we measure test
input diversity by introducing the Tests Close to the target Diversity
(TCD) and Tests on Target Diversity (TTD) metrics. To this aim,
we represent the generated inputs in a lower dimensional space
by using the t-distributed Stochastic Neighbor Embedding (t-SNE)

algorithm [25, 70], which projects similar inputs to neighbouring
points and dissimilar inputs to distant points with high probability.
Then, we project the inputs generated by all approaches being
compared onto the same t-SNE space and compute the clusters of
neighbouring points in such a space. The diversity value of each
approach is computed as the number of clusters containing at least
one input generated by the corresponding approach divided by the
total number of clusters [10]: TCD and TTD measure the relative
coverage of the clusters by each approach.

We configured t-SNE by choosing 2 as number of dimensions
since it performed well in preliminary runs and it eases the results’
interpretation. As regards the t-SNE perplexity (which affects the
way inputs are scattered or concentrated), we set it to 0.1 after a
visual inspection of the plots obtained with different values. For
clustering, we applied the k-Means algorithm [6] and performed
Silhouette analysis [62] to determine the optimal number of clus-
ters 𝑘∗, i.e., the value that better balances between cohesion and
separation of the clusters.

Figure 3 exemplifies the diversity comparison between three
DeepAtash configurations. The points represent the inputs gener-
ated by each configuration in the 2D t-SNE space. Each configura-
tion is assigned a different color. Points are grouped into clusters
(represented as circles) and diversity is computed as the number of
clusters covered by each configuration. In this example, the diver-
sity value for NSGAII-Input is 0.1; it is 0.5 for NSGAII-Explanation
and 0.7 for NSGAII-Latent.

3.3 Evaluation Scenarios

A crucial aspect of focused input generation is the choice of the
target cells. Developers can use information from the operation
environment to identify feature map cells that occur in operation,
but are under-represented in the train/test set. Since we do not have
access to operation data, we chose our targets starting from the
misbehaviour probability map (such as the one in Figure 1), a feature
map that encodes the DL failure probability for different feature
combinations. More precisely, misbehaviour probability maps are
feature maps that report, for each cell, the Average Misbehaviour

Figure 3: Example t-SNE plot to explain the computation

of test diversity metrics, with clusters represented as empty

circles containing inputs (smaller, solid shapes).

Probability (AMP) observed in different test executions. AMP is
computed as the ratio of the number of misbehaviour-inducing
inputs to the total number of inputs in each cell. Since some cells
may contain only a small number of inputs, the corresponding AMP
values might be affected by a large error. The confidence of AMP
can be computed by means of Wilson’s confidence interval esti-
mator for binomial random variables, which indicates whether the
misbehaviour probability estimation for a given cell suffers from
a high error or not. A combination of feature values is considered
to produce misbehaviours with high confidence if its AMP is > 0.8
and its confidence interval’s lower bound is > 0.65 [76]. In the mis-
behaviour probability map shown in Figure 1, the darkness level of
the cells is proportional to their AMP values; thick borders high-
light combinations producing misbehaviours with high confidence,
while blank cells correspond to uncovered feature combination
values. We leveraged misbehaviour probability maps and AMP to
mimick various possible user choices by evaluating DeepAtash in
the following scenarios:

Dark Targets: targets selected among the dark, thick-bordered
cells (misbehaviour probability > 0.8 and confidence interval >
0.65). These cells correspond to error-prone feature values and
mostly contain individuals with high probability of causing mis-
behaviours. In this scenario, the user wants to collect diverse new
inputs with critical characteristics, e.g., to fine tune the DL system;

Grey Targets: targets corresponding to covered cells with mis-
behaviour probability ≤ 0.8. These cells correspond to feature value
combinations for which the DL system generally behaves correctly.
Therefore, in this scenario the user wants to stress the DL system
with inputs whose characteristics seem not critical, to see if they
can possibly trigger any misbehaviour;

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella

Table 1: Hyperparameters used in the experiments

Parameter MNIST IMDB
seed pool size 800 1000
population size 100 100
time budget (s) 3600 3600
mutation lower bound 0.01 -
mutation upper bound 0.6 -
sentimentDist - 5
maxDist - 5
repopulation upper bound 10 10
target archive size 81 42
number of epochs for retraining 6 5
learning rate for retraining 0.001 0.0001

White Targets: targets corresponding to uncovered cells, i.e.,
cells that do not contain inputs. In this scenario, the user wants to
generate new data with missing feature combinations or check the
feasibility of the selected combination of feature values.

Since the usage scenario we are mimicking is one where op-
eration data occur in regions of the feature map that are under-
populated, for dark and grey cells we apply the additional filter
that the selected cell must contain a number of individuals lower
than the average number of individuals observed across all feature
map cells (this filter is not necessary for white cells, which are not
populated at all).

3.4 Experimental Procedure

To answer our research questions, we ran DeepAtash in the three
evaluation scenarios introduced in Section 3.3 along with DeepHy-
perion on the subject systems, in all the possible 2D combinations
of the proposed features. For each scenario, the first step is the
selection of the target cell from the misbehaviour probability maps
generated by DeepHyperion.

As regards the dark and grey targets, we chose a cell among the
underpopulated dark and grey cells of the misbehaviour probability
map. More specifically, we randomly chose a cell for which the
coverage (i.e., number of individuals assigned to the cell) achieved
by DeepHyperion is lower than the average cell coverage, com-
puted by considering all cells in all DeepHyperion runs. As white
targets, we chose uncovered cells in the DeepHyperion misbe-
haviour probability maps. Since uncovered cells may be unfeasible,
we considered white cells in the neighborhood of covered cells.

Then, we ran DeepAtash focusing on the identified target cells
and collected the resulting archives of solutions. The hyperparam-
eters of DeepAtash were obtained whenever possible from the
experiments conducted with DeepHyperion [76] and were fine
tuned in a few preliminary runs to ensure the target cells are reach-
able with them. The resulting hyperparameter values are reported
in Table 1. For DeepHyperion, we used the latest version of the
tool along with the configuration reported in the corresponding
paper [77].

To facilitate a fair comparison, we used the same initial seeds
for the compared tools. The seeds for MNIST were obtained by
considering all test set inputs that belong to class “5”. For IMDB,
the seeds were selected from the test set inputs, all belonging to

class “positive”. Since we had a huge number (i.e., 12500) of posi-
tive reviews in the IMDB test set, we randomly selected an initial
seed pool of 1000 inputs among the ones closer to the target (with
distance lower than a threshold maxDist; see Table 1). For IMDB
reviews, we adopted the first validity constraint (see Section 2.6)
in our experiments, i.e. the number of sentiment words must not
differ more than a threshold sentimentDist from the initial one. The
second validity constraint is also available in the implementation
of DeepAtash, but it was not enabled in our experiments, as the
first was sufficient to ensure validity with high probability.

To allow statistical analysis, we ran each approach 10 times for
each target, for a total of 240 runs on each subject. To ensure a
fair comparison, we ran all tools with the same time budget (1h
forMNIST and IMDB). To assess the statistical significance of the
comparisons between different DeepAtash configurations (RQ1),
and between DeepAtash and DeepHyperion (RQ2), we applied
the Mann-Whitney U-test and measured the effect size by means
of the Vargha-Delaney’s Â12 statistic [5].

To answer RQ3, we fine tuned [8] the original DL models and
trained them for additional epochs at the same or lower learning
rate (see Table 1) with the inputs generated by DeepAtash close
(TC) and within (TT) the considered targets. For each feature combi-
nation, we collected the inputs generated byDeepAtashwithin and
close to the targets. Then, we equally divided these inputs into two
sets, i.e., 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝐴 and 𝑡𝑒𝑠𝑡𝐷𝐴 . The combination of the original
training set and 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝐴 was used to fine tune the DL system,
while the original test set and 𝑡𝑒𝑠𝑡𝐷𝐴 were used to evaluate the
accuracy of the fine-tuned DL system. We repeated the fine tuning
procedure 10 times for each run of DeepAtash on each target cell,
to measure the statistical significance of the accuracy improvement.

4 RESULTS

4.1 RQ1: Effectiveness

Table 2 reports the results achieved on MNIST and IMDB by the 6
alternative configurations of DeepAtash, obtained by combining
the search strategies (GA and NSGA-II) and the sparseness metrics
(i.e., distance computed in the Input, Latent and Explanation space).

For each evaluation scenario described in Section 3.3, the table
reports a row for each feature combination. The columns report
the number of failure-inducing inputs generated in the proximity
of the target (TC), those of them exactly on target (TT), and their
diversity (TCD and TTD, respectively). For each target-feature
combination (row), the largest value is highlighted in bold, while the
underlined values are comparable among them (𝑝-value ≥ 0.05) and
significantly higher than the remaining ones (𝑝-value < 0.05, large
or medium effect size), which, when they exist, are not underlined.

As regards MNIST (Table 2 - top), the configuration NSGA-II
+ Latent produced significantly more and sparser inputs close to
the target (TC and TCD) than the other configurations, on average
across all the target-feature combinations (39% of them on target).
Instead, in terms of TT and TTD, NSGA-II + Latent performed
comparably to GA + Latent and GA + Input (𝑝-value > 0.05), and
significantly better than the other DeepAtash configurations.

For IMDB (Table 2 - bottom), NSGA-II + Latent performed signif-
icantly better than the other configurations, on average across all
the target-feature combinations and for all the considered metrics.

DeepAtash: Focused Test Generation for Deep Learning Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 2: RQ1 - Tests close to target (TC), tests on target (TT), tests close to target diversity (TCD), and tests on target diversity

(TTD) by alternative DeepAtash configurations forMNIST and IMDB. In each row, boldface indicates the maximum; underline

indicates values statistically indistinguishable from the maximum.

Input Latent Explanation

GA NSGA-II GA NSGA-II GA NSGA-II
Features TC [TCD] TT [TTD] TC [TCD] TT [TTD] TC [TCD] TT [TTD] TC [TCD] TT [TTD] TC [TCD] TT [TTD] TC [TCD] TT [TTD]

M
N
IS
T

D
ar
k Mov-Lum 41.10 [0.38] 41.10 [0.48] 43.10 [0.36] 23.90 [0.12] 51.70 [0.37] 51.70 [0.47] 50.50 [0.31] 46.80 [0.58] 16.40 [0.24] 1.00 [0.05] 33.60 [0.28] 1.80 [0.25]

Mov-Or 69.10 [0.28] 4.40 [0.10] 58.60 [0.22] 1.60 [0.15] 66.10 [0.30] 10.20 [0.45] 55.30 [0.22] 1.20 [0.13] 28.50 [0.14] 0.00 [0.00] 26.70 [0.12] 3.00 [0.25]
Or-Lum 70.30 [0.27] 24.20 [0.65] 32.10 [0.14] 5.90 [0.35] 65.50 [0.31] 25.90 [0.70] 64.30 [0.22] 15.60 [0.50] 55.30 [0.21] 8.60 [0.55] 42.80 [0.18] 5.80 [0.45]

Gr
ey

Mov-Lum 41.40 [0.60] 38.30 [0.73] 21.80 [0.28] 0.00 [0.00] 22.10 [0.38] 16.20 [0.35] 53.40 [0.78] 28.40 [0.40] 5.10 [0.25] 0.60 [0.08] 13.40 [0.49] 0.40 [0.10]
Mov-Or 18.50 [0.45] 3.00 [0.20] 15.30 [0.43] 2.40 [0.20] 16.00 [0.24] 0.70 [0.11] 20.50 [0.53] 4.70 [0.28] 13.10 [0.30] 1.80 [0.15] 14.90 [0.49] 0.40 [0.10]
Or-Lum 10.10 [0.29] 10.10 [0.34] 22.90 [0.47] 8.60 [0.27] 9.20 [0.23] 9.20 [0.30] 19.20 [0.52] 6.80 [0.19] 6.40 [0.29] 3.50 [0.24] 28.10 [0.56] 6.20 [0.55]

W
hi
te Mov-Lum 14.30 [0.36] 11.60 [0.28] 28.20 [0.61] 2.30 [0.30] 20.60 [0.42] 10.70 [0.36] 29.60 [0.54] 10.40 [0.25] 10.90 [0.38] 5.10 [0.15] 15.40 [0.60] 6.20 [0.55]

Mov-Or 24.60 [0.44] 2.00 [0.21] 11.30 [0.31] 7.70 [0.10] 22.10 [0.50] 5.90 [0.35] 25.10 [0.65] 1.80 [0.18] 6.70 [0.43] 0.00 [0.00] 7.30 [0.32] 0.00 [0.00]
Or-Lum 23.30 [0.48] 21.60 [0.58] 30.20 [0.52] 10.10 [0.38] 28.70 [0.51] 24.30 [0.71] 51.00 [0.66] 28.00 [0.65] 21.50 [0.51] 6.80 [0.48] 20.80 [0.52] 4.30 [0.48]

AVG 34.74 [0.39] 17.37 [0.40] 29.28 [0.37] 6.94 [0.21] 33.56 [0.36] 17.20 [0.42] 40.99 [0.49] 15.97 [0.35] 18.21 [0.31] 3.00 [0.19] 22.56 [0.40] 2.68 [0.26]

IM
D
B

D
ar
k Neg-Pos 33.00 [0.68] 22.00 [0.5] 29.40 [0.53] 6.90 [0.34] 25.80 [0.58] 14.30 [0.53] 40.30 [0.74] 33.40 [0.64] 25.70 [0.49] 7.8 [0.31] 29.90 [0.51] 9.60 [0.37]

Neg-Verb 7.20 [0.31] 3.20 [0.12] 9.20 [0.36] 6.30 [0.16] 5.00 [0.16] 0.70 [0.10] 27.10 [0.63] 14.60 [0.34] 11.20 [0.53] 3.60 [0.15] 19.70 [0.54] 6.60 [0.17]
Pos-Verb 33.80 [0.53] 33.80 [0.43] 31.60 [0.45] 31.60 [0.47] 33.70 [0.50] 33.40 [0.58] 37.60 [0.52] 37.60 [0.57] 28.80 [0.50] 27.80 [0.38] 28.30 [0.47] 6.60 [0.17]

Gr
ey

Neg-Pos 7.50 [0.30] 5.20 [0.35] 6.40 [0.22] 3.50 [0.09] 5.00 [0.25] 3.80 [0.06] 10.80 [0.52] 8.30 [0.35] 0.80 [0.05] 0.00 [0.00] 5.60 [0.34] 0.10 [0.00]
Neg-Verb 7.30 [0.45] 7.30 [0.41] 15.00 [0.57] 14.90 [0.61] 10.70 [0.51] 10.70 [0.49] 15.70 [0.63] 13.10 [0.62] 9.50 [0.54] 8.60 [0.54] 12.20 [0.45] 11.20 [0.55]
Pos-Verb 27.10 [0.50] 27.10 [0.60] 28.70 [0.49] 28.70 [0.49] 24.10 [0.62] 27.30 [0.41] 32.00 [0.53] 32.00 [0.56] 27.30 [0.41] 27.30 [0.68] 25.50 [0.62] 25.50 [0.58]

W
hi
te Neg-Pos 24.20 [0.65] 15.40 [0.65] 31.10 [0.62] 22.40 [0.63] 29.40 [0.64] 18.00 [0.53] 38.90 [0.60] 29.20 [0.63] 24.30 [0.52] 20.90 [0.58] 26.40 [0.67] 14.20 [0.58]

Neg-Verb 4.10 [0.26] 1.80 [0.10] 0.00 [0.00] 0.00 [0.00] 5.60 [0.52] 0.00 [0.00] 13.00 [0.37] 3.60 [0.25] 0.70 [0.06] 0.00 [0.00] 0.40 [0.02] 0.00 [0.00]
Pos-Verb 6.10 [0.13] 2.30 [0.10] 25.10 [0.60] 9.40 [0.38] 3.00 [0.10] 1.70 [0.07] 25.70 [0.48] 3.80 [0.19] 8.40 [0.15] 0.00 [0.00] 15.90 [0.53] 1.30 [0.07]

AVG 16.70 [0.42] 13.12 [0.36] 19.60 [0.43] 13.70 [0.35] 15.81 [0.43] 11.86 [0.33] 26.80 [0.56] 19.51 [0.46] 19.60 [0.43] 13.70 [0.35] 18.21 [0.46] 10.80 [0.30]

We can observe that in terms of sparseness (metrics TCD, TTD),
heatmaps (column “Explanations”) perform consistently worse
across most configurations, with only a few exceptions. This may
be either due to the information that they discard by consider-
ing only input elements that contribute to a prediction, or to the
heatmap computation itself, which introduces an overhead and
hence consumes the overall test generation budget more quickly.

RQ1: Overall, the multi-objective DeepAtash configuration

guided by the sparseness metric computed in the latent space

generated a significantly larger number of diverse inputs

close to the target than the other tool configurations. For

IMDB, this configuration performs significantly better also

in terms of tests on target.

4.2 RQ2: Comparison

Table 3 compares the results achieved on MNIST and IMDB by
the best DeepAtash configuration (i.e., NSGA-II - Latent) with the
baseline tool DeepHyperion.

For MNIST and IMDB, DeepAtash achieved significantly larger
TC, TCD, TT and TTD values than DeepHyperion, on average
across all the target-feature combinations. DeepAtash generated
up to 29.2 more inputs on targets than DeepHyperion. In white
cells where the competitor generated none (e.g., for IMDB, White
target, Neg-Pos feature combination), DeepAtash was able to find
some inputs with the desired feature combinations.DeepAtash out-
performed DeepHyperion for all the target-feature combinations
(with statistical significance 80% of the times).

These results confirm that our focused approach can generate in-
puts in feature space areas where state-of-the-art, general-purpose
generator DeepHyperion can generate few or no inputs.

RQ2: DeepAtash outperforms the state of the art tool Deep-

Hyperion in generating misbehaviour-inducing inputs with

target feature value combinations.

4.3 RQ3: Usefulness

Table 4 shows the accuracy improvement achieved by fine tuning
the considered DL systems with 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝐴 , the training partition
of the inputs generated by DeepAtash. The “before” columns show
the accuracy of the original DL systems on the original test set
and 𝑡𝑒𝑠𝑡𝐷𝐴 , the test set partition generated by DeepAtash. The
“after” columns show the accuracy values achieved after fine tuning
the DL systems with 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝐴 . All values are underlined, which
indicates statistically significant accuracy improvement after the
fine tuning (𝑝-value < 0.05, large effect size).

Since we selected state-of-the-art DL systems, their initial accu-
racy on the original test set was quite high, i.e., 99.11% for MNIST
and 88.19% for IMDB. On the other hand, their initial accuracy
on 𝑡𝑒𝑠𝑡𝐷𝐴 was obviously 0% since we considered misbehaviour-
inducing inputs generated by DeepAtash.

Quite surprisingly, by fine tuning the considered DL systems us-
ing 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝐴 , we improved their accuracy on the original test set
despite their initial high quality. In fact, for all feature combinations,
the accuracy on the original test set significantly increased (up to
1.39% for Neg-Pos). This might be due to an increased generaliza-
tion capability induced by the additional training on inputs with
under-represented feature combinations. So, not only we observed

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella

Table 3: RQ2 - Results achieved by the compared tools for

MNIST and IMDB. Tests close to target (TC) and their diver-

sity (TCD); tests on target (TT) and their diversity (TTD). In

each row, boldface is the maximum; underline indicates val-

ues statistically indistinguishable from the maximum.

DeepAtash DeepHyperion
Features TC [TCD] TT [TTD] TC [TCD] TT [TTD]

M
N
IS
T

D
ar
k Mov-Lum 50.50 [0.90] 46.80 [0.97] 18.30 [0.38] 2.30 [0.07]

Mov-Or 55.30 [0.86] 1.20 [0.27] 37.60 [0.47] 2.40 [0.42]
Or-Lum 64.30 [0.95] 15.60 [0.74] 13.80 [0.30] 2.70 [0.15]

Gr
ey

Mov-Lum 53.40 [0.81] 28.40 [0.50] 22.70 [0.50] 3.70 [0.10]
Mov-Or 20.50 [0.88] 4.70 [0.45] 24.70 [0.45] 1.10 [0.15]
Or-Lum 19.20 [0.81] 6.80 [0.39] 2.20 [0.19] 0.10 [0.01]

W
hi
te Mov-Lum 29.60 [0.74] 10.40 [0.40] 11.90 [0.42] 0.00 [0.00]

Mov-Or 25.10 [0.71] 1.70 [0.20] 20.70 [0.50] 0.00 [0.00]
Or-Lum 51.00 [1.00] 28.00[1.00] 0.80 [0.05] 0.00 [0.00]

AVG 40.99 [0.85] 15.96 [0.55] 16.97 [0.36] 1.37 [0.10]

IM
D
B

D
ar
k Neg-Pos 40.30 [0.94] 33.40 [1.00] 8.20 [0.11] 1.60 [0.05]

Neg-Verb 27.10 [1.00] 14.60 [0.43] 10.80 [0.05] 4.50 [0.07]
Pos-Verb 32.00 [0.95] 32.00 [1.00] 2.40 [0.05] 1.10 [0.05]

Gr
ey

Neg-Pos 10.80 [0.73] 8.30 [0.40] 10.20 [0.20] 1.00 [0.20]
Neg-Verb 15.70 [0.95] 13.10[0.93] 7.70 [0.11] 1.80 [0.08]
Pos-Verb 37.60 [0.95] 37.60 [0.95] 12.00 [0.15] 5.20 [0.11]

W
hi
te Neg-Pos 38.90 [1.00] 29.20 [1.00] 0.20 [0.00] 0.00 [0.00]

Neg-Verb 13.00 [0.50] 3.60 [0.30] 0.30 [0.10] 0.00 [0.00]
Pos-Verb 25.70 [0.70] 3.50 [0.30] 0.70 [0.10] 0.00 [0.00]

AVG 26.79 [0.86] 19.48 [0.70] 5.83 [0.10] 1.69 [0.06]

Table 4: RQ3 - Model Accuracy (ACC) on the original test set

and on the test set generated byDeepAtash, before and after

fine tuning the DL system with the training partition of gen-

erated inputs. In each row, boldface indicates the maximum;

underline indicates values statistically significant.

Original Test Set DA Test Set
Features ACC before ACC after ACC before ACC after

M
N
IS
T Mov-Lum

99.11
99.23

0.00
99.92

Mov-Or 99.24 99.65

Or-Lum 99.23 99.02

IM
D
B Neg-Pos

88.19
89.58

0.00
98.36

Neg-Verb 89.56 99.47

Pos-Verb 89.56 97.35

no sign of regressions, but we also achieved a slight accuracy im-
provement on the original test set. As expected, the accuracy on
𝑡𝑒𝑠𝑡𝐷𝐴 dramatically increased from 0% to at least 97.35%.

RQ3: DeepAtash is useful to improve the accuracy of a DL

system trough fine tuning, by targeting feature combinations

under-represented or unseen during development.

4.4 Threats to Validity

External Validity: The choice of subjects might have threatened
the external validity. We chose DL systems widely used in SE re-
search that belong to separate domains. In particular, we chose
subjects for which semantic information on the inputs is accessible.
In fact, the key requirement for DeepAtash is that a generative
model of the inputs exists, such that genetic operators can operate

on the generative model’s parameters. Therefore, our main limi-
tation is the availability of a generative input model. Generative
models are widely used in many domains, such as cyber-physical
systems, where the environment is often modeled and simulated.
In domains where a model would be prohibitively expensive, like
image processing, generative neural networks (e.g., GANs [15, 19])
can be used as an input model. Replication of our experiments on
additional case studies would be important to corroborate our find-
ings. Another external validity threat is introduced by the choice of
the targets, because results may not generalize to different choices
of the target. To mitigate this threat, we chose three types of targets
(Dark, Grey, White), corresponding to different usage scenarios.
Conclusion Validity: The stochastic nature of DL systems and
search-based approaches may affect the results. Therefore, we ran
each experiment multiple times and conducted standard statistical
tests to assess the results’ significance.
Reproducibility: Our results can be replicated using the replica-
tion package and experimental data we provided for DeepAtash.

5 RELATEDWORK

While focused test case generation has been extensively investi-
gated for traditional software, no existing work adopted it for DL
software. Correspondingly, related works can be organized into
focused test generation for traditional software and general (unfo-
cused) test generation for DL based systems.

5.1 Automated and Focused Test Generation

In the SE literature, several approaches have been proposed to
automatically generate test inputs to exercise, which often means
to cover, the software under test and to possibly reveal its faults [73].
Among these approaches, search-based ones proved to be effective
and efficient for problems with complex input spaces, for which an
exhaustive or symbolic analysis would be impractical [46].

Shamshiri et al. [64] conducted an empirical study showing that
state-of-the-art test generators achieve low fault detection rate,
despite being able to extensively cover the program code. One of
the reasons for this issue was that covering faulty code is often
not enough to trigger a failure, because it is also necessary to
exercise the program with specific inputs. Focused test generation
approaches can address this issue by generating diverse inputs that
target a specific part of the software under test.

Alipour et al. [4] propose directed swarm testing, which randomly
generates tests that have increased probability of covering selected
source code targets. Gotlieb and Petit [21] exploit a constraint solver
to cover a specific control flow path of the program under test. The
Diversified Focused Testing approach by Menendez et al. [47]
combines model checking and search-based testing to generate
inputs that reach specific program points, while promoting input
diversity. IFRIT by Romdhana et al. [61] exploits Reinforcement
Learning (RL) to generate diverse test inputs for a focused point
of the program under test. IFRIT’s RL agent rewards the generated
inputs if they are diverse from the previously generated solutions
and they are able to reach the target.

The approaches listed above were proposed for traditional soft-
ware. In this work, we adapt search-based focused generation of

DeepAtash: Focused Test Generation for Deep Learning Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

diverse test inputs to target a specific region of the feature space of
DL systems.

5.2 Test Generation for DL Based Systems

Traditional code coverage adequacy criteria, such as branch cover-
age, cannot assess whether DL systems are adequately exercised
by a test set and, thus, cannot effectively drive test generation. In
fact, the DL systems’ behaviour mostly depends on their training
data, rather than their code. Therefore, test generation approaches
for DL systems introduced adequacy metrics designed to take into
account DL-specific characteristics.

Pei et al. [52] proposed DeepXplore, a test generator guided by
neuron coverage, i.e., the number of activated neurons. In particular,
a neuron is considered activated if its output value is higher than
a predefined threshold. Several approaches extended the neuron
coverage adequacy metric [41] or used neuron coverage metrics to
guide test generation [13, 14, 23, 41, 67, 72]. Lei et al. [40], proposed
DeepCT, which is guided, instead, by combinatorial criteria that
consider the interactions between neurons. These neuron-based
testing approaches are focused on covering specific sets of neurons
or model layers. However, empirical results showed that higher neu-
ron coverage does not correlate with a higher number of detected
failures and leads to the generation of less natural inputs [24].

Kim et al. [31–34] designed surprise adequacy criteria, based on
the degree of “surprise” of an input for the neural network, i.e., the
novelty of a test input with respect to the training data. In partic-
ular, the authors define 𝑘 buckets of consecutive surprise ranges
that must be covered by the considered test set. Zhang et al. [75]
studied the distribution of test inputs on different uncertainty pat-
terns, i.e. combinations of alternative uncertainty metrics such as
prediction confidence and variation ratio. They did not explicitly
define test adequacy metrics, but they recommended to generate
additional test inputs to cover the least covered uncertainty pat-
terns. DeepAtash focuses test generation on input features rather
than on surprise values or uncertainty patterns, since the latter are
not easily interpretable by humans and do not provide hints on the
characteristics of the inputs that make the system fail.

Other works adapted mutation adequacy criteria to DL [27, 29,
30]. DeepMetis [57] is a testing approach to increase the mutation
killing ability of a test set, by generating test inputs that behave
correctly on original DL models and misbehave on mutants. Vahdat
Pour el al. [54] proposed an approach to generate adversarial inputs
for source code processing DNNs, guided by the mutation killing
criterion defined by Hu et al. [27]. No study investigated the inter-
play between mutation adequacy and human-interpretable input
features (such as the ones used by DeepAtash), which is worth to
be investigated in future work.

NSGAII-DT [2] is a test generator for vision-based control sys-
tems that uses decision trees to guide its evolutionary algorithm
towards input space areas which are likely to cause misbehaviours.
While DeepAtash targets predefined input features’ values and
promotes input diversity, NSGAII-DT focuses on the most criti-
cal feature values’ combinations learned during the exploration.
HUDD [16] is a technique that automatically identifies root causes
of DNN failures by clustering the heatmaps of test inputs, so as to
group together inputs having common characteristics.

SEDE [17] leverages search based algorithms to generate diverse
inputs with predefined critical features, mapped to one or more
clusters identified byHUDD. Differently fromHUDD and SEDE, we
exploit higher-level input explanations (i.e., feature maps), rather
than low-level ones (i.e., heatmaps).

Active Learning (AL) techniques sample candidate inputs from
an unlabeled dataset according to metrics like uncertainty or di-
versity [55], without targeting any specific feature combination.
Hence, AL may cover a specific region of the feature space just by
chance. We instead go one step ahead, as DeepAtash generates
misbehaviour-inducing inputs with predefined feature combina-
tions. Indeed, software engineers may know which feature combi-
nations represent critical in-field scenarios that are important to
test. Instead, AL is driven only by uncertainty or diversity metrics.

6 CONCLUSIONS AND FUTUREWORK

DeepAtash is the first automated focused test generator for DL sys-
tems. Our experiments show that it outperforms the state of the art
in generating diverse misbehaviour-inducing inputs on predefined
targets. Results show also that fine tuning a DNN on underrep-
resented inputs produced by DeepAtash not only increases its
prediction accuracy on them, but also its generalization ability on
the whole input distribution.

In our future work, we plan to generalise our results to addi-
tional DL systems, including industrial ones. In particular, we will
apply DeepAtash to domains where inputs are too complex to be
abstracted into a model-based representation, e.g., by integrating
GAN-based input representations into our approach.

ACKNOWLEDGMENTS

This work was partially supported by the H2020 project PRECRIME,
funded under the ERC Advanced Grant 2017 Program (ERC Grant
Agreement n. 787703).

REFERENCES

[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2016.
Testing advanced driver assistance systems using multi-objective search and
neural networks. In Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016. ACM,
63–74. https://doi.org/10.1145/2970276.2970311

[2] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018.
Testing Vision-based Control Systems Using Learnable Evolutionary Algorithms.
In Proceedings of the 40th International Conference on Software Engineering (ICSE

’18). ACM, Gothenburg, Sweden, 1016–1026. https://doi.org/10.1145/3180155.
3180160

[3] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and
Thomas Stifter. 2018. Testing Autonomous Cars for Feature Interaction Failures
Using Many-objective Search. In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering (ASE 2018). ACM, Montpellier,
France, 143–154. https://doi.org/10.1145/3238147.3238192

[4] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. 2016.
Generating focused random tests using directed swarm testing. In Proceedings of

the 25th International Symposium on Software Testing and Analysis. 70–81.
[5] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s guide to statistical tests

for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250. https://doi.org/10.1002/stvr.1486

[6] David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful

seeding. Technical Report. Stanford.
[7] Richard Bellman. 1966. Dynamic Programming. Science 153,

3731 (1966), 34–37. https://doi.org/10.1126/science.153.3731.34
arXiv:https://www.science.org/doi/pdf/10.1126/science.153.3731.34

[8] Yoshua Bengio. 2011. Deep Learning of Representations for Unsupervised and
Transfer Learning. In Proceedings of the 2011 International Conference on Un-

supervised and Transfer Learning Workshop - Volume 27 (UTLW’11). JMLR.org,

https://doi.org/10.1145/2970276.2970311
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1126/science.153.3731.34
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.153.3731.34

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella

Washington, USA, 17–37.
[9] Matteo Biagiola, Stefan Klikovits, Jarkko Peltomaki, and Vincenzo Riccio. 2023.

SBFT Tool Competition 2023 - Cyber-Physical Systems Track. In 16th IEEE/ACM

International Workshop on Search-Based And Fuzz Testing, SBFT 2023, Melbourne,

Australia, May 14, 2023.
[10] Matteo Biagiola and Paolo Tonella. 2023. Testing of Deep Reinforcement Learning

Agents with Surrogate Models. arXiv preprint arXiv:2305.12751 (2023).
[11] François Chollet. 2020. Simple MNIST convnet. https://github.com/keras-team/

keras-io/blob/master/examples/vision/mnist_convnet.py.
[12] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on

evolutionary computation 6, 2 (2002), 182–197.
[13] Samet Demir, Hasan Ferit Eniser, and Alper Sen. 2020. DeepSmartFuzzer: Reward

Guided Test Generation For Deep Learning. In Proceedings of the Workshop on

Artificial Intelligence Safety 2020 (IJCAI-PRICAI 2020), Yokohama, Japan, January,

2021 (CEUR Workshop Proceedings, Vol. 2640). CEUR-WS.org, 134–140. http:
//ceur-ws.org/Vol-2640/paper_19.pdf

[14] Swaroopa Dola, Matthew B. Dwyer, and Mary Lou Soffa. 2021. Distribution-
Aware Testing of Neural Networks Using Generative Models. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE). 226–237. https:
//doi.org/10.1109/ICSE43902.2021.00032

[15] Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2021. Exposing
Previously Undetectable Faults in Deep Neural Networks. In Proceedings of the

30th ACM SIGSOFT International Symposium on Software Testing and Analysis

(Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery, New
York, NY, USA, 56–66. https://doi.org/10.1145/3460319.3464801

[16] Hazem Fahmy, Fabrizio Pastore, Mojtaba Bagherzadeh, and Lionel Briand. 2021.
Supporting Deep Neural Network Safety Analysis and Retraining Through
Heatmap-Based Unsupervised Learning. IEEE Transactions on Reliability 70,
4 (2021), 1641–1657.

[17] Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. 2022. Simulator-based expla-
nation and debugging of hazard-triggering events in DNN-based safety-critical
systems. arXiv preprint arXiv:2204.00480 (2022).

[18] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary generation of whole test
suites. In 2011 11th International Conference on Quality Software. IEEE, 31–40.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative Adversarial
Networks. Commun. ACM 63, 11 (oct 2020), 139–144. https://doi.org/10.1145/
3422622

[20] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org.

[21] Arnaud Gotlieb and Matthieu Petit. 2010. A uniform random test data generator
for path testing. Journal of Systems and Software 83, 12 (2010), 2618–2626.

[22] Antonio Guerriero, Roberto Pietrantuono, and Stefano Russo. 2021. Operation is
the hardest teacher: estimating DNN accuracy looking for mispredictions. In 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
348–358.

[23] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:
differential fuzzing testing of deep learning systems. In Proceedings of the 2018

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena

Vista, FL, USA, November 04-09, 2018. ACM, 739–743. https://doi.org/10.1145/
3236024.3264835

[24] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,
and Miryung Kim. 2020. Is Neuron Coverage a Meaningful Measure for Testing

Deep Neural Networks? Association for Computing Machinery, New York, NY,
USA, 851–862. https://doi.org/10.1145/3368089.3409754

[25] Geoffrey E Hinton and Sam Roweis. 2002. Stochastic neighbor embedding.
Advances in neural information processing systems 15 (2002).

[26] Minqing Hu and Bing Liu. 2004. Opinion Lexicon. https://www.cs.uic.edu/~liub/
FBS/sentiment-analysis.html.

[27] Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. 2019. Deep-
Mutation++: A Mutation Testing Framework for Deep Learning Systems. In 2019

34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
1158–1161. https://doi.org/10.1109/ASE.2019.00126

[28] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering (ICSE ’20). Association for ComputingMachinery, Seoul, South Korea,
1110–1121. https://doi.org/10.1145/3377811.3380395

[29] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime:
Mutation Testing of Deep Learning Systems based on Real Faults. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.

[30] Gunel Jahangirova and Paolo Tonella. 2020. An Empirical Evaluation of Muta-
tion Operators for Deep Learning Systems. In IEEE International Conference on

Software Testing, Verification and Validation (ICST’20). IEEE, 12 pages.
[31] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system

testing using surprise adequacy. In Proceedings of the 41st International Conference

on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE
/ ACM, 1039–1049. https://doi.org/10.1109/ICSE.2019.00108

[32] Jinhan Kim, Jeongil Ju, Robert Feldt, and Shin Yoo. 2020. Reducing DNN Labelling

Cost Using Surprise Adequacy: An Industrial Case Study for Autonomous Driving.
Association for Computing Machinery, New York, NY, USA, 1466–1476. https:
//doi.org/10.1145/3368089.3417065

[33] Seah Kim and Shin Yoo. 2020. Evaluating Surprise Adequacy for Question An-

swering. Association for Computing Machinery, New York, NY, USA, 197–202.
https://doi.org/10.1145/3387940.3391465

[34] Seah Kim and Shin Yoo. 2021. Multimodal Surprise Adequacy Analysis of In-
puts for Natural Language Processing DNN Models. In 2021 IEEE/ACM Interna-

tional Conference on Automation of Software Test (AST). https://doi.org/10.1109/
AST52587.2021.00017

[35] Kiran Lakhotia, Mark Harman, and Phil McMinn. 2007. A Multi-objective Ap-
proach to Search-based Test Data Generation. In Proceedings of the 9th Annual

Conference on Genetic and Evolutionary Computation (GECCO ’07). ACM, London,
England, 1098–1105. https://doi.org/10.1145/1276958.1277175

[36] Craig Larman. 1997. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design. Prentice Hall.
[37] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and

documents. In International conference on machine learning. PMLR, 1188–1196.
[38] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[39] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.

[40] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019.
DeepCT: Tomographic Combinatorial Testing for Deep Learning Systems. In 26th

IEEE International Conference on Software Analysis, Evolution and Reengineering,

SANER 2019, Hangzhou, China, February 24-27, 2019. IEEE, 614–618. https:
//doi.org/10.1109/SANER.2019.8668044

[41] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
Multi-granularity Testing Criteria for Deep Learning Systems. In Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software Engineering

(ASE 2018). ACM, Montpellier, France, 120–131. https://doi.org/10.1145/3238147.
3238202

[42] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. 2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the association for computational

linguistics: Human language technologies. 142–150.
[43] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, DanHuang, Andrew Y. Ng, and

Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In Pro-

ceedings of the 49th Annual Meeting of the Association for Computational Linguis-

tics: Human Language Technologies. Association for Computational Linguistics,
Portland, Oregon, USA, 142–150. http://www.aclweb.org/anthology/P11-1015

[44] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge University Press.

[45] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sym-

posium on Software Testing and Analysis (ISSTA 2016). ACM, Saarbrücken,
Germany, 94–105. https://doi.org/10.1145/2931037.2931054

[46] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156.

[47] Héctor D Menéndez, Gunel Jahangirova, Federica Sarro, Paolo Tonella, and David
Clark. 2021. Diversifying focused testing for unit testing. ACM Transactions on

Software Engineering and Methodology (TOSEM) 30, 4 (2021), 1–24.
[48] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping

elites. arXiv:1504.04909 [cs.AI]
[49] Vuong Nguyen, Stefan Huber, and Alessio Gambi. 2021. SALVO: Automated

Generation of Diversified Tests for Self-driving Cars from Existing Maps. In
2021 IEEE International Conference on Artificial Intelligence Testing (AITest). IEEE,
128–135.

[50] Mark Omernick and François Chollet. 2020. Text classification from
scratch. https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_
classification_from_scratch.py.

[51] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2 (2018), 122–158.

[52] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. Commun. ACM 62, 11 (Oct.
2019), 137?145. https://doi.org/10.1145/3361566

[53] Eva Pettersson, Beáta Megyesi, and Joakim Nivre. 2013. Normalisation of histori-
cal text using context-sensitive weighted Levenshtein distance and compound
splitting. In Proceedings of the 19th Nordic conference of computational linguistics

(Nodalida 2013). 163–179.

https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py
https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py
http://ceur-ws.org/Vol-2640/paper_19.pdf
http://ceur-ws.org/Vol-2640/paper_19.pdf
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.1145/3460319.3464801
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
http://www.deeplearningbook.org
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3368089.3409754
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
https://doi.org/10.1109/ASE.2019.00126
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3387940.3391465
https://doi.org/10.1109/AST52587.2021.00017
https://doi.org/10.1109/AST52587.2021.00017
https://doi.org/10.1145/1276958.1277175
https://doi.org/10.1109/SANER.2019.8668044
https://doi.org/10.1109/SANER.2019.8668044
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/2931037.2931054
https://arxiv.org/abs/1504.04909
https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_classification_from_scratch.py
https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_classification_from_scratch.py
https://doi.org/10.1145/3361566

DeepAtash: Focused Test Generation for Deep Learning Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

[54] Maryam Vahdat Pour, Zhuo Li, Lei Ma, and Hadi Hemmati. 2021. A Search-Based
Testing Framework for Deep Neural Networks of Source Code Embedding. In
2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST).
IEEE, 36–46.

[55] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta,
Xiaojiang Chen, and Xin Wang. 2021. A survey of deep active learning. ACM
computing surveys (CSUR) 54, 9 (2021), 1–40.

[56] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD ’16). Association for Computing Machinery, New York, NY, USA,
1135–1144. https://doi.org/10.1145/2939672.2939778

[57] V. Riccio, N. Humbatova, G. Jahangirova, and P. Tonella. 2021. DeepMetis: Aug-
menting a Deep Learning Test Set to Increase its Mutation Score. In 2021 36th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE Computer Society, Los Alamitos, CA, USA, 355–367. https://doi.org/10.
1109/ASE51524.2021.9678764

[58] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael
Weiss, and Paolo Tonella. 2020. Testing machine learning based systems: a
systematic mapping. Empir. Softw. Eng. 25, 6 (2020), 5193–5254. https://doi.org/
10.1007/s10664-020-09881-0

[59] Vincenzo Riccio and Paolo Tonella. 2020. Model-based Exploration of the Frontier
of Behaviours for Deep Learning System Testing. In Proceedings of the ACM Joint

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE ’20). Association for Computing Machinery, 13
pages. https://doi.org/10.1145/3368089.3409730

[60] Vincenzo Riccio and Paolo Tonella. 2023. When and Why Test Generators
for Deep Learning Produce Invalid Inputs: an Empirical Study. In Proceedings

of the IEEE/ACM International Conference on Software Engineering (ICSE ’23).
IEEE/ACM.

[61] Andrea Romdhana, Mariano Ceccato, Alessio Merlo, and Paolo Tonella. 2022.
IFRIT: Focused Testing through Deep Reinforcement Learning. In IEEE Inter-

national Conference on Software Testing, Verification and Validation (ICST’22).
IEEE.

[62] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics

20 (1987), 53–65.
[63] P. Selinger. 2003. Potrace: a polygon-based tracing algorithm. http://potrace.

sourceforge.net/potrace.pdf
[64] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and

Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges (T). In 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE). 201–211. https:
//doi.org/10.1109/ASE.2015.86

[65] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In International conference on machine learning. PMLR, 3319–
3328.

[66] Chakkrit Tantithamthavorn and Jirayus Jiarpakdee. 2021. . Monash University.
https://doi.org/10.5281/zenodo.4769127 Retrieved 2021-05-17.

[67] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings

of the 40th International Conference on Software Engineering (ICSE ’18). ACM,
Gothenburg, Sweden, 303–314. https://doi.org/10.1145/3180155.3180220

[68] Erico Tjoa and Cuntai Guan. 2020. A survey on explainable artificial intelligence
(xai): Toward medical xai. IEEE transactions on neural networks and learning

systems 32, 11 (2020), 4793–4813.
[69] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of

model-based testing approaches. Software testing, verification and reliability 22, 5
(2012), 297–312.

[70] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[71] Jiapeng Wang and Yihong Dong. 2020. Measurement of text similarity: a survey.
Information 11, 9 (2020), 421.

[72] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: A Coverage-
Guided Fuzz Testing Framework for Deep Neural Networks. In Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2019). Association for Computing Machinery, Beijing, China, 146–157.
https://doi.org/10.1145/3293882.3330579

[73] Qian Yang, J Jenny Li, and David M Weiss. 2009. A survey of coverage-based
testing tools. Comput. J. 52, 5 (2009), 589–597.

[74] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. 2020. Machine Learning Testing:
Survey, Landscapes and Horizons. IEEE Transactions on Software Engineering

Early Access, – (2020), 1–1. https://doi.org/10.1109/TSE.2019.2962027
[75] Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun

Zhao, and Sun Meng. 2020. Towards Characterizing Adversarial Defects of
Deep Learning Software from the Lens of Uncertainty. In Proceedings of 42nd

International Conference on Software Engineering (ICSE ’20). ACM, 12 pages.
[76] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021.

Deephyperion: exploring the feature space of deep learning-based systems
through illumination search. In Proceedings of the 30th ACM SIGSOFT International

Symposium on Software Testing and Analysis. Virtual, Denmark, 79–90.
[77] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2022.

Efficient and Effective Feature Space Exploration for Testing Deep Learning
Systems. ACM Trans. Softw. Eng. Methodol. (jun 2022). https://doi.org/10.1145/
3544792 Just Accepted.

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/ASE51524.2021.9678764
https://doi.org/10.1109/ASE51524.2021.9678764
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1145/3368089.3409730
http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/potrace.pdf
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.5281/zenodo.4769127
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1145/3544792
https://doi.org/10.1145/3544792

	Abstract
	1 Introduction
	2 The DeepAtash Technique
	2.1 Input Representation
	2.2 Fitness Functions
	2.3 Archive of Solutions
	2.4 Search Strategies
	2.5 Population Management
	2.6 Mutation

	3 Experimental Evaluation
	3.1 Subject Systems
	3.2 Research Questions
	3.3 Evaluation Scenarios
	3.4 Experimental Procedure

	4 Results
	4.1 RQ1: Effectiveness
	4.2 RQ2: Comparison
	4.3 RQ3: Usefulness
	4.4 Threats to Validity

	5 Related Work
	5.1 Automated and Focused Test Generation
	5.2 Test Generation for DL Based Systems

	6 Conclusions and Future Work
	Acknowledgments
	References

