
Received December 17, 2019, accepted January 3, 2020, date of publication January 14, 2020, date of current version January 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966522

Do Memories Haunt You? An Automated Black
Box Testing Approach for Detecting Memory
Leaks in Android Apps
DOMENICO AMALFITANO 1, VINCENZO RICCIO 2, PORFIRIO TRAMONTANA 1,
AND ANNA RITA FASOLINO 1
1Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
2Software Institute, Università della Svizzera italiana, 6904 Lugano, Switzerland

Corresponding author: Anna Rita Fasolino (fasolino@unina.it)

This work was supported in part by the Context of the Research Project OPL-APPS, IIoT Open Platform and Manufacturing Applications,
funded by the Italian Ministry for University and Research (MIUR), under Grant ARS01_00615.

ABSTRACT Memory leaks represent a remarkable problem for mobile app developers since a waste of
memory due to bad programming practices may reduce the available memory of the device, slow down the
apps, reduce their responsiveness and, in the worst cases, they may cause the crash of the app. A common
cause of memory leaks in the specific context of Android apps is the bad handling of the events tied to the
Activity Lifecycle. In order to detect and characterize these memory leaks, we present FunesDroid, a tool-
supported black box technique for the automatic detection of memory leaks tied to the Activity Lifecycle
in Android apps. FunesDroid implements a testing approach that can find memory leaks by analyzing
unnecessary heap object replications after the execution of three different sequences of Activity Lifecycle
events. In the paper, we present an exploratory study that shows the capability of the proposed technique to
detect memory leaks and to characterize them in terms of their size, persistence and growth trend. The study
also illustrates how memory leak causes can be detected with the support of the information provided by the
FunesDroid tool.

INDEX TERMS Android, Android activity lifecycle, memory leak, resource leak, Android testing.

I. INTRODUCTION
The number of users of mobile technology and smartphones
is steadily growing and has surpassed 3 billion in november
2019.1 Introduced by Google in 2007, Android is today the
world’s most popular mobile operating system. Suffice it to
say that Android accounted for around 88 percent of all smart-
phone sales to end users worldwide in the second quarter
of 2018.2

More and more people around the world rely on mobile
software applications (apps) to carry out various daily tasks.
And thus, the demand for quality to mobile apps has grown
together with their spread. App users require them to be
reliable, efficient, secure, usable. Therefore, failures exposed
by an app may have a negative impact on the user experience

The associate editor coordinating the review of this manuscript and

approving it for publication was Weizhi Meng .
1https://www.statista.com/statistics/330695/
2https://www.statista.com/statistics/266136/

and lead users to look for another application that offers
the same features among about 2.47 million apps available
on the official Google app store at September 2019.3 As
a consequence, mobile developers should give proper con-
sideration to the quality of their applications by adopting
suitable quality assurance techniques, such as testing [1].
Several techniques and tools are currently available for testing
an Android app before it is published to the market [2], [3].
Test automation tools can facilitate software testing activities
since they save humans from routine, time consuming and
error prone manual tasks [4], [5].

Testing activities should focus both on functional and
non-functional requirements of Android apps. Performance
testing is a type of non-functional testing that intends to
determine how a system performs in terms of responsiveness
and stability under a certain load. Performance testing is par-
ticularly relevant to mobile apps, since they may be exposed

3https://www.statista.com/statistics/276623/

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 12217

https://orcid.org/0000-0002-4761-4443
https://orcid.org/0000-0002-6229-8231
https://orcid.org/0000-0003-3264-185X
https://orcid.org/0000-0001-7116-019X
https://orcid.org/0000-0003-4384-5786
https://www.statista.com/statistics/330695/
https://www.statista.com/statistics/266136/
https://www.statista.com/statistics/276623/


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

to well-known problems of software aging [6], [7]. Software
aging refers to the progressive performance degradation of
long-time running software, which may by caused by the
reduction of available memory [8], or the increasing use of
virtual memory [9], and may cause worsening of application
responsiveness [10], and application or system crashes [11].
Software aging is known to occur for Android smartphones
and may greatly affect user’s experience, especially after a
long period of usage.

Memory leaks are one of the main causes of software aging
[12] and performance degradation in Android apps [13], [14].
A memory leak is a type of resource leak [15] that occurs
when a computer program incorrectly manages memory allo-
cations in such a way that memory which is no longer needed
is not released. Several examples of problems caused by
memory leaks can be found in the Google’s Android project.4

In Android a major source of issues, including memory
leaks, is the mishandling of the Activity lifecycle, i.e. a
mobile-specific feature that allows users to smoothly navigate
through an app and switch between apps [1], [16]–[18].

Memory leaks impact a considerable number of real
Android apps, as it has been shown in the recent work by
Toffalini et al. [14], and therefore a number of solutions to
detect them have been proposed in the literature. Since mem-
ory leaks are usually due to bad programming practices that
negatively impact the app’s memory usage, several source
code static analysis approaches have been proposed in the
literature to detect possible root causes of Android memory
leaks [15], [19]–[22]. A key limitation of these approaches
is that they focus only on subsets of bad practices. Moreover,
they may report a considerable number of false positives [14].

Another family of approaches focuses instead on the
effects produced by memory leaks and exploits dynamic
analysis and memory monitoring to detect those effects, such
as in the case of the LeakCanary library [23].

The effectiveness of these approaches depends on their
capability to trigger program executions that cause memory
leaks. However, often they require the source code instru-
mentation and, therefore, they are not applicable when the
app code is not available or the Android version is not sup-
ported by the tool.

Other testing techniques have been proposed in the lit-
erature that are based on the execution of Android-specific
events able to trigger memory object replications [24]. These
testing techniques require models of the app to generate test
cases and, therefore, their usage is not straightforward when
such a model is not available.

To overcome some limitations of existing approaches,
in this paper we propose a technique that automates the
detection of the specific category of memory leaks in Android
apps that are tied to the Android Activity lifecycle. Our
technique combines automated testing with memory analysis
and has been implemented in a tool called FunesDroid. The
tool systematically tests each Activity composing an app by

4https://issuetracker.google.com/issues?q=memory leak

leveraging mobile-specific events able to exercise the Activ-
ity lifecycle and to expose possible memory leaks. Therefore,
it detects object replications by automatically comparing the
memory state before the event execution and after the event
execution.

This technique is completely black-box, since it does not
require the source code of the app, but just the Android
Package (APK) file used for its distribution and installation.
However, when the source code is available, the information
provided by the tool can be also exploited to aid the developer
in finding the root causes of the observed leaks.

We used this technique to analyze 283 real Android apps
in order to assess the FunesDroid capability in detecting
potential memory leaks in real Android apps. We found that
about 37% of the considered apps showed object replications.
Moreover, we carried out a study on a subset of these appli-
cations, aimed at characterizing the detected memory leaks in
terms of their persistence, size, and growth trend. The results
of the analysis allowed us to distinguish bad programming
practices causing permanent or temporarymemory leaks hav-
ing constant or increasing size and to find the causes of the
leaks.

The remainder of the paper is structured as follows.
Section II provides the background and amotivating example.
Section III describes the proposed testing technique and the
implemented tool. In Sections IV and V, we describe the
experiments that were performed. Section VI provides related
work and a qualitative comparison between our approach and
similar ones proposed in the literature. Finally, Section VII
draws the conclusions and presents future work.

II. BACKGROUND ON MEMORY LEAKS DUE TO ANDROID
ACTIVITY LIFECYCLE
A. MEMORY MANAGEMENT AND MEMORY LEAKS IN
ANDROID
Each Android app runs in the context of a Virtual Machine
such as Android RunTime (ART) or its predecessor Dalvik.5

When an application starts, the Android system starts a new
Linux process for the application with a single thread of
execution and assigns it the required resources, including
heap memory space. To maintain a functional multi-tasking
environment, Android sets a hard limit on the heap size for
each app. The exact heap size limit varies between devices
based on how much RAM the device has available overall.
If an app has reached the heap capacity and tries to allo-
cate more memory, it can receive an OutOfMemoryError.6

Moreover, when users switch between apps, Android keeps
apps that are not foreground in a least-recently used (LRU)
cache, therebymaking the app switching faster. As the system
runs low on memory, it kills processes in the LRU cache
beginning with the process least recently used. The system

5https://source.android.com/devices/tech/dalvik/
6https://developer.android.com/topic/performance/memory-

overview#RestrictingMemory

12218 VOLUME 8, 2020

https://issuetracker.google.com/issues?q=memory leak
https://source.android.com/devices/tech/dalvik/
https://developer.android.com/topic/performance/memory-overview#RestrictingMemory
https://developer.android.com/topic/performance/memory-overview#RestrictingMemory


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

also accounts for processes that hold onto the most memory
and can terminate them to free up RAM.7

Android apps, like Java programs, do not explicitly destroy
objects in the heap memory space. Instead, the heap memory
is optimized by the Garbage Collector (GC). The purpose of
the garbage collector is to free up memory space by destroy-
ing objects in the heap that are not directly or indirectly
referenced by active objects. The garbage collector usually
acts in two phases: in the labeling phase, it looks for objects
that cannot be destroyed labeling them as GC roots, and
recursively labels as reachable objects all the objects that are
directly or indirectly referenced by the GC roots. An example
of GC roots are static objects, that cannot be deallocated
during the app execution. In the latter phase, the garbage
collector frees heap memory space by deallocating all the
unlabeled objects [25].

This mechanism can be the cause of a general problem
called memory leak. According to Göhransson [13], a mem-
ory leak is defined as a portion of memory allocated by the
application that is not used anymore but never identified by
the Garbage Collector as freeable memory. This definition
may include memory allocated for too long, such as memory
occupied by objects referenced by a long running thread.

Memory leaks may cause the heap utilization ratio to con-
tinuously increase. As a result, garbage collection (GC) is
frequently triggered, with the consequent increasing in the
response time of the application [26].

An Android-specific triggering cause of memory leaks is
represented by events that exercise the Activity lifecycle,
whose influence on the garbage collector behavior will dis-
cussed in the next subsection.

B. ANDROID ACTIVITY LIFECYCLE
Activity classes are the essential building blocks of Android
apps; an Activity can be seen as a single GUI through which
the users can access the features offered by the app. An
Activity is implemented as a subclass of the Activity class,
defined in the Android Framework. The Activity instances
exercised by the user are managed as an Activity stack by the
Android OS. A user navigates through, out of, and back to an
app but only the Activity at the top of the stack is active in
the foreground of the screen. To ensure a smooth transition
between the screens, the other Activities are kept in the stack.
This allows the user to navigate to a previously exercised
Activity without losing its progress and information. The
system can decide to get rid of an Activity in background to
free up memory space.

To provide this rich user experience, Android Activity
objects have a proper lifecycle, transitioning through different
states. Figure 1 shows the Activity lifecycle as it is illustrated
in the official Android Developer Guide.8 The rounded rect-
angles represent all the states an Activity object can be in; the

7https://developer.android.com/topic/performance/memory-
overview#SwitchingApps

8https://developer.android.com/reference/
android/app/Activity.html

FIGURE 1. The android activity lifecycle key loops.

edges are labeled with the callback methods that are invoked
by the Android platform when an Activity transits between
states.

The Activity visible in the foreground of the screen
and interacting with the user is in the Resumed state,
either it is created for the first time or resumed from the
Paused or Stopped states. When an Activity has lost focus
but is still visible (e.g., a system modal dialog has focus on
top of the Activity), it is in the Paused state; in this state the
appmaintains all the user progress and information.When the
user navigates to a new Activity, the previous one is put in the
Stopped state; it still retains all the user information but it is
no longer visible to him. If an Activity is inPaused or Stopped
states, the system can drop it from memory by either asking
it to finish, or simply killing its process and it transits to
the Destroyed state. When it is displayed again to the user,
it should be completely restarted and its saved state must be
restored.

Figure 1 also highlights three key loops of the Activity
lifecycle. According to [27]we name these loops Entire Loop,
Visible Loop, and Foreground Loop, respectively. In the
following we describe these three loops and report event
sequences able to exercise each of them:

1) The Entire Loop (EL) of an Activity consists
in the Resumed-Paused-Stopped-Destroyed-Created-
Started-Resumed sequence of states. This loop can be
exercised by events that cause a configuration change,
e.g. an orientation change of the screen, that destroys
the Activity instance and then recreates it according to
the new configuration;9

2) The Visible Loop (VL) corresponds to the Resumed-
Paused-Stopped-Started-Resumed sequence of states
during which the Activity is hidden and then made
visible again. There are several event sequences able
to stop and restart an Activity, e.g. turning off and on

9https://developer.android.com/guide/components/activities/state-
changes.html

VOLUME 8, 2020 12219

 https://developer.android.com/topic/performance/memory-overview#SwitchingApps
 https://developer.android.com/topic/performance/memory-overview#SwitchingApps
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/guide/components/activities/state-changes.html
https://developer.android.com/guide/components/activities/state-changes.html


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

the screen or putting the app in background and then
in foreground again through the Overview or Home
buttons;

3) The Foreground Loop (FL) of an Activity involves the
Resumed-Paused-Resumed state sequence. The tran-
sition Resumed-Paused can be triggered by opening
non full-sized elements such as modal dialogs or semi-
transparent activities that occupy the foreground while
the Activity is still visible in background. To trigger the
transition Paused-Resumed the user should discard this
element.

According to this model, the Activity classes represent
entry points for Android applications but can be destroyed
and recreated during the apps lifecycle. Therefore, they do
not represent roots for the garbage collector and can be deal-
located and re-allocated on heap memory. In the following
subsection, a motivating example showing how this mecha-
nism can cause leaks will be shown.

C. MOTIVATING EXAMPLE
The motivating example refers to an Android app that is
designed to display a list of items whose values are read
from a remote Firebase database. As an item in the database
changes its state, the app GUI is automatically updated.

An excerpt of the app source code is shown in Listing 1.

Listing 1. An example of code causing leaks.

The entry point of the app is the class MainActivity. The
onCreate method instantiates an ArrayAdapter object that
will contain the data values that will be shown in the GUI and
an object called wishlistModel of the class MyWishlistModel
that is linked to the adapter.

The constructor of the MyWishlistModel class instanti-
ates a listener of a Firebase Database (childEventListener)
as an anonymous internal class. The wishlistModel object
maintains an explicit reference to the wishListAdapter object,
which in turn refers to the MainActivity object.

A memory leak problem can be observed after a screen
orientation change, that causes the destruction of the current
MainActivity object and the creation of a new one. In this
case, the garbage collector cannot deallocate neither the
object of the inner class implementing ChildEventListener
(because the connection to the Firebase Database is still
open), nor the object of the outer class MyWishListModel.
Consequently, the wishListAdapter object (that is referenced
by theMyWishListModel object) and theMainActivity object
(that is referred by wishListAdapter) cannot be deallocated,
together with all the other objects allocated by MainActivity.

In summary, after the orientation change we can observe
memory leaks due to the replication of all these objects.
A resource leak due to the replication of the connection
to the Firebase Database may occur, too. Further rotations
of the device will increase the number of leaked objects and
the amount of leaked memory and could bring to an Out of
Memory error.

In this case, the detected memory leak is time persis-
tent, since the leaked objects will never be destroyed by the
garbage collector until the connection is alive. The size of
this memory leak will depend on the number and size of the
objects included in the MainActivity and this size will grow
with a constant growth rate, since each device rotation will
cause the leaking of further objects. Due to the contemporary
occurrence of these three characteristics, the found memory
leak represents actually a severe issue.

In conclusion, a possible code fix consists of the explicit
removal of the listener in the context of the onDestroymethod
of the MainActivity class, as shown in Listing 2.

Listing 2. Solution of the leak issue.

III. THE FUNESDROID APPROACH
In this section, we describe the FunesDroid testing technique
and the tool that we have realized to implement it.

The goal of FunesDroid is to check whether the Activity
classes of an analyzed Android app expose memory leaks tied
to the Activity Lifecycle. Unlike other approaches, the pro-
posed technique does not rely on the continuous soliciting of

12220 VOLUME 8, 2020



D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

Figure 2. The FunesDroid leak detection technique.

the app under test and on the continuous monitoring of the
whole memory. Moreover, it does not exploit a static analysis
approach where the inspection and the instrumentation of the
app source code is needed.

The FunesDroid technique is based on the detection of
replicated objects in memory, after the execution of an input
event sequence able to exercise one of the three key Activ-
ity Lifecycle loops introduced in Section II-B. Hereafter,
we define Lifecycle Event Sequence (LES) a sequence of
events able to trigger one of the key loops of the Activity
Lifecycle [27].

Our technique requires that, after an Activity of the
app under test is launched, a first dump of the memory is
performed. Therefore, after the execution of the selected LES
and the forced execution of the garbage collector, a second
dump of the memory is performed. The comparison of the
two memory dumps provides a list of replicated objects that
cannot be deallocated by the garbage collector.

This technique is implemented in the FunesDroid tool,
whose architecture is shown in Figure 2. FunesDroid relies
on three components, i.e., the APK Analyzer, the Funes Test
Driver, and the Funes Memory Driver.
The APK Analyzer has the responsibility of analyzing

the .apk file of the Analyzed Android App and extracting an
Activity List which reports all the Activity classes providing
potential entry points of the analyzed app. The Funes Test
Driver is the component that can send LESs to the Activities
in the Activity List. It interacts with a Testing Device, that can
be either real or emulated, where the Application Under Test
is running. The Funes Memory Driver is able to perform a
memory dump by interacting with the memory of the Testing
Device. It is also able to solicit garbage collector executions
on the Testing Device. The Funes Test Driver component
produces a Leak Report by comparing two memory dumps.
The Leak Report contains the names of the replicated objects
and for each of these objects the number of their instances
and the corresponding heap memory occupation.

Figure 3 reports a sequence diagram showing how Funes-
Droid tests a single Activity of the application under test. The
Funes Test Driver starts by launching, on the Testing Device,
the Activity to be tested. After that, the Funes Test Driver asks
the Funes Memory Driver to gather the state of the device
memory. To this aim, the Funes Memory Driver first forces
the execution of the Garbage Collector and subsequently
gathers the dump of the heap memory. The dump is a data
structure reporting the names of all the objects referenced by
the activity under test along with their instances and heap
memory occupation (measured in Bytes). We named this
dump as DBLES, i.e., Dump Before LES.
Then, the Funes Test Driver executes N repetitions of a

given Lifecycle Event Sequence (LES) that is able to exer-
cise a specific Activity lifecycle key loop. The execution of
more than one repetition of the same LES allows to observe
whether the object replications grow with the number of
executed events.

We leverage 3 Lifecycle Event Sequences, i.e., the Dou-
ble Orientation Change (DOC), the Background Foreground
(BF) and the Semi- Transparent Activity Intent (STAI) event
sequences [27]. We chose these Lifecycle Event Sequences
for 2 main reasons. The former reason is that each of
these event sequences is able to exercise a different life-
cycle key loop. The latter reason is that they represent
neutral event sequences, i.e. events that should have neu-
tral effects on resource consumption and should not lead
to increases in resource usage [17]. Therefore, according

Figure 3. The FunesDroid detection technique.

VOLUME 8, 2020 12221



D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

with [24], replicated objects detected after the execution
of a neutral event sequence may correspond to memory
leaks.

1) Double Orientation Change (DOC) consists in a
sequence of two consecutive device orientation change
events, from landscape to portrait and back again
to landscape or, equivalently, from portrait to land-
scape and, finally, to portrait. Each orientation change
exercises the EL loop, since the running Activity is
destroyed and recreated in order to adapt to the device
layout.

2) Background-Foreground (BF), corresponding to a
sequence of events exercising the VL loop. This
sequence puts the app in background through the tap
of the Home button and then pushes the app again in
foreground by selecting the same Activity from the list
of the recently stopped ones. This last event causes the
restarting of the Activity, without the need to redraw its
graphical layout.

3) Semi-Transparent Activity Intent and back (STAI),
corresponding to a sequence of events exercising theFL
loop. It consists in starting a semi-transparent Activity
that pauses the current foreground Activity and then
returning to it tapping the Back button.

A delay time of tw milliseconds is waited after the exe-
cution of the N Lifecycle Event Sequence repetitions. This
delay represents the time interval after which we evaluate
the existence of object replications. In other words, we detect
only object replications that persist after this time interval.

After thatN repetitions of a given LES have been triggered
and after the waiting time, another memory dump, named
DALES (Dump After LES), is gathered by the Funes Memory
Driver.

Lastly, DALES and DBLES are compared to check the
presence of undue replicated objects, that are added to the
Leak Report output file.

A. FuneSDroid IMPLEMENTATION
FunesDroid is implemented in Python and its source code is
freely available.10 In the following, we report insights about
the technological choices we adopted to realize the three
FunesDroid components.

To implement the APK Analyzer we exploited Apktool.11

It analyzes the AndroidManifest.xml of the app under test and
extracts the list of all the Activity classes belonging to the
analyzed app.

The Funes Test Driver component is responsible of
installing the AUT, launching the Activities of the AUT,
and firing the Lifecycle Event Sequences. In the following,
we illustrate how we implemented these features.

10https://github.com/reverse-unina/FunesDroid
11https://ibotpeaches.github.io/Apktool/

• The AUT is installed by exploiting the command pro-
vided by the Android Debug Bridge (adb).12

• The Activity classes to be tested are launched by exploit-
ing the Intent mechanism.

• The three Lifecycle Event Sequences are triggered by
exploiting combinations of commands provided by the
adb. For implementing STAI, FunesDroid preliminary
installs a stubAndroid appwe named stai.apk that shows
a semitransparent Activity in the foreground when it
is executed. To trigger the STAI LES, this stub app is
first launched and then the semitransparent Activity
is dismissed by triggering the key code event KEY-
CODE_BACK. The BF LES is obtained by sending
to the device the sequence of key code events KEY-
CODE_HOME, KEYCODE_APP_SWITCH, and KEY-
CODE_APP_SWITCH. The DOC LES is implemented
by setting the user_rotation parameter first to 1 and then
to 0.

The Funes Memory Driver is able to force the execution
of the garbage collector and to return the current state of the
heap memory. To trigger the GC we exploited the following
adb command: adb -s ‘‘+DEVICE+’’ shell kill−10 ’’+ pid,
where DEVICE is the identifier of the real or virtual device
executing the AUT and pid is the process ID of the AUT. The
dump of the heap memory is obtained by exploiting the adb
dumpheap command that returns an heap dump .hprof file.
A heap dump is a snapshot of the memory of a Java process

at a certain point of time. The snapshot contains information
about the Java objects and classes in the heap at the moment
the snapshot was triggered. 13

For comparing two heap dump files we exploited the
Eclipse Memory Analyzer Tool (MAT).14 MAT is widely
used by Android developers [25] and is integrated in other
memory leaks detection tools such as Android Studio Mem-
ory Profiler [28], Leak Canary [23] and LeakDAF [16].

In FunesDroid we used MAT for obtaining the list of all
the class names, number of instances of each class and the
total shallow heap. The comparison performed by MAT just
matches on class names and then shows the delta of the
number of instances of each class. This delta may represent
a list of potential memory leaks and their retained heap size,
measured in bytes.15 Of course, the replicated objects may
also correspond to the expected behaviour of the app. A fur-
ther source code analysis would be necessary to confirm the
existence of a memory leak.

12https://developer.android.com/studio/
command-line/adb

13https://help.eclipse.org/2019-09/index.jsp?
topic=/org.eclipse.mat.ui.help/welcome.html

14https://www.eclipse.org/mat/
15http://memoryanalyzer.blogspot.com/2010/01/heap-dump-analysis-

with-memory-analyzer.html

12222 VOLUME 8, 2020

https://github.com/reverse-unina/FunesDroid
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://help.eclipse.org/2019-09/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.html
https://help.eclipse.org/2019-09/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.html
https://www.eclipse.org/mat/
http://memoryanalyzer.blogspot.com/2010/01/heap-dump-analysis-with-memory-analyzer.html
http://memoryanalyzer.blogspot.com/2010/01/heap-dump-analysis-with-memory-analyzer.html


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

TABLE 1. Results obtained by the exploratory study carried out on
1184 activity classes belonging to 283 different android applications.

IV. EXPLORATORY STUDY: FINDING OBJECT
REPLICATIONS
To evaluate our approach, we conducted an exploratory study
with the aim to investigate the capability of FunesDroid to
detect object replications tied to Activity Lifecycle events that
represent potential Memory Leaks in real Android apps.

To carry out the study, we randomly selected a sample
of 283 open source Android apps16 including about 20%
of the 1324 apps that were present in the online repository
F-Droid17 at the moment of the study. We restricted our
selection to apps that were also published on Google Play18

and were executable on devices equipped with Android 7.1.1
(API 25).

We tested all the apps by using FunesDroid. For each
Activity class listed in the appmanifest file, we triggered once
each of the three Activity Lifecycle Event Sequences (LES)
described in Section III (i.e. the DOC, BF and STAI event
sequences). We set FunesDroid to have a waiting time wt =
1 sec, in each test execution. For each Activity, FunesDroid
returned the list of replicated objects and the total amount
of heap memory allocation for each object. The study was
performed on a desktop PC having an Intel(R) Core(TM) i7
4790@3.60GHz processor and 8GB of RAM, running a stan-
dard Nexus S AVD equipped with Android 7.1.1 (API 25).

In the context of the 283 tested applications, 3,524 different
Activity classes were included in the manifest files. Only
1,184 of these classes could be tested by FunesDroid. The
other ones were not executed due to the need to set specific
extra parameters to start them, that could not be deduced by
the manifest analysis.

The obtained results are summarized in Table 1 that shows,
for each LES, the number of apps exposing at least a poten-
tial memory leak (Potentially Leaked Apps) and the number
of tested Activities exposing at least an object replication
(Potentially Leaked Activities). We can observe that 106 out
of 283 applications (37.5%) have revealed at least an object
replication, while the testing of 201 out of 1,184 Activity
classes revealed at least one object replication (17%). As the
Table shows, the DOC event sequence is the sequence that
triggered most of the object replications.

FunesDroid is able to detect object replications that repre-
sent potential memory leaks. A possible approach to confirm

16The list of the 283 tested applications is available at https:
//github.com/reverse-unina/FunesDroid/blob/master/
testedApps.txt

17https://f-droid.org
18http://play.google.com

TABLE 2. Number of activities showing a monotonous growing trend of
heap memory allocation.

the observed leaks would require an expensive source code
analysis of the apps to find the causes of these object repli-
cations. An alternative approach to validate memory leaks,
which is widely adopted in the literature [9], [17], [24],
consists of monitoring the heap memory usage during the
app execution and of observing the possible performance
degradation.

According to the latter family of approaches, we decided
to investigate the trend of object replications as the number of
executed event sequences grows. To this aim, we considered
each of the 201 Activities that showed object replications and
solicited them by sequences of 100 LESs of the same type of
the ones that caused object replications. We monitored the
trend of object replications by sampling the heap memory
after each 10 LESs. Therefore we were able to distinguish
Activities showing a monotonous growing of the heap, from
Activities not showing this trend. Table 2 reports the percent-
age of Activities with monotonous trend.

This datum indicates that in more than 80% of cases,
the object replications observed by FunesDroid caused a
growing memory allocation and could likely be considered
as true memory leaks. In the remaining cases, we could not
conclude anything about the observed object replications.
A source code analysis would be strictly needed to validate
these latter leaks.

These results show (1) the capability of FunesDroid in
finding memory leaks due to the triggering of Activity life-
cycle events and (2) the large spread of memory leaks tied to
Activity Lifecycle Events in real Android apps.

The latter finding is coherent with the experimental results
obtained by Toffalini et al. [14], who found potential causes
of memory leaks via static analysis in the majority of the
applications they downloaded from Google Play. Moreover,
our results are coherent with the ones reported in [16], which
foundmemory leaks related toActivity classes in 37 out of the
99 tested Android apps in an experiment carried out in 2017.

V. SECOND EXPLORATORY STUDY: CHARACTERIZING
MEMORY LEAKS
The exploratory study we presented in Section IV did not
investigate some aspects of the observed leaks that may be
useful for characterizing their severity and impact on the
system performance, such as the size and the persistence
of the memory leak. Moreover, it did not investigate the
possible causes of the observed leaks. Therefore, we decided
to conduct a further exploratory study that focused on these
specific aspects.

VOLUME 8, 2020 12223

https://github.com/reverse-unina/FunesDroid/blob/master/testedApps.txt
https://github.com/reverse-unina/FunesDroid/blob/master/testedApps.txt
https://github.com/reverse-unina/FunesDroid/blob/master/testedApps.txt
https://f-droid.org
http://play.google.com


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

TABLE 3. Object apps.

The goal of this second study is to characterize a sample
of the observed object replications in terms of their size,
persistence and growth trend, as the type of event sequence,
the number of repetitions of event sequence, and the wait-
ing time of FunesDroid vary. Moreover, the study aimed at
exploring the possible causes of the observed leaks.

A. OBJECTS
As objects of the study we considered a subset of 8 versions
of 7 different apps, selected among the ones involved in the
former study and that showed at least one object replication.

Table 3 reports for each considered object the app name,
the number of the release we tested, and the total number of
executable activity classes that are listed in the manifest file.
For 6 out of 7 applications, only a single release available
on F-Droid was tested. For the RadioDroid app, instead,
we considered two releases, i.e. the version 0.37 and the
version 0.47 published after themaintenance intervention that
fixed a bug causing the leak we found in the previous version.

B. VARIABLES AND METRICS
The independent variables of this study are (1) the type of
Lifecycle Event Sequence (LES) triggered on the application
under test, (2) the number of times N the LES is sequentially
triggered on it, (3) the wt time waited after the triggering of
the last event of the sequence.

As regards the LES categories, the three types of sequence
presented in the previous sections and called DOC, BF and
STAI were considered.
As regards the N number of LES repetitions, we considered

sequences including a single LES, a sequence of 2 identical
LESs and a sequence of 10 identical LESs in order to evaluate
if the amount of leaked memory varied with the number of
executed events.

As regards the waiting time wt, we considered three pos-
sible values, respectively of 1, 2 and 5 seconds. The reason
to consider three different values is to evaluate if the memory
leaks are only temporary, since their occurrence depends on
the wt time, or persistent (when they occur for each consid-
ered wt time).

In summary, the three independent variables belong to the
following sets:

LES ∈ {DOC,BF, STAI }, (1)

N ∈ {1 sequence, 2 sequences, 10 sequences } (2)

wt ∈ {1 second, 2 seconds, 5 seconds} (3)

For each of the 27 combinations of the three independent
variables, FunesDroid was executed by obtaining sets of
replicated objects and by measuring the following metrics:
• DHM : total quantity of HeapMemory allocated to repli-
cated objects (in bytes);

• DC : number of distinct classes for which at least a
replicated object instance were found;

• DI : total number of replicated objects instances.
On the basis of the analysis of the measured values,

we evaluated the following three characteristics:
• Size: we evaluated the size (in bytes) of a memory leak
in terms of the amount of retained memory due to object
replications (DHM).

• Persistence: the persistence of a memory leak can
be observed by comparing the memory leak Size for
different waiting times wt. A leak can be considered
persistent if it can be always observed when varying the
waiting time wt, temporary (or transient) if the leak can
be observed in executions having given wt values, but
not in executions with wt values greater than the former
considered ones.

• Growth Trend: the growth trend of a memory leak can
be observed by comparing the memory leak size for
increasing values of the numberN of executed sequences
of events. The Growth Trend is considered positive if
the memory leak size increases with the number of LES
repetitions. Elsewhere, the growth trend is considered
null, when the memory leak size is constant with the
number of LES repetitions.

C. EXPERIMENTAL PROCEDURE
The testing process implemented by FunesDroid was
repeated for each of the 27 combinations of the independent
variable values and for each of the 8 considered objects (from
A1 toA8). It was performed on the same testing infrastructure
used in the exploratory study. In order to assure that each
run was executed in the same conditions, virtual devices data
were cleaned after each FunesDroid execution.

The FunesDroid version used to carry out these experi-
ments and the apks of the tested apps are freely available on
our github space.19

D. RESULTS
Table 4 lists the obtained results. Each row reports the name
of the app, the type of the executed LES, the waiting time
wt (different values have been merged in the same row when
the corresponding experiments produced the same results),
the Activity class whose execution caused object replications
(if any) and the values of DHM, DC and DI for LES rep-
etitions including N = 1, 2 or 10 consecutive sequences,
respectively.

19https://github.com/reverse-unina/FunesDroid/
tree/8a8e70b4f72ab32d2ff7eb6ec161cecbf9dc980a

12224 VOLUME 8, 2020

https://github.com/reverse-unina/FunesDroid/tree/8a8e70b4f72ab32d2ff7eb6ec161cecbf9dc980a
https://github.com/reverse-unina/FunesDroid/tree/8a8e70b4f72ab32d2ff7eb6ec161cecbf9dc980a


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

TABLE 4. Results of the experiments carried out using FunesDroid.

1) DATA ANALYSIS
Overall, FunesDroid found 17 object replications in the exe-
cution of 13 different Activities belonging to the apps under
test. The type of LES causing the higher number of object
replications was DOC, that caused replications in 11 dif-
ferent Activities belonging to 7 different applications. The
execution of the BF sequence, instead, revealed object repli-
cations on 4 different Activities belonging to 4 different apps.
Objects replications were found by the STAI sequence only
on 2 Activity classes belonging to 2 different apps.

We analyzed the data reported in Table 4 in order to char-
acterize the leaks in terms of persistence and growth trend.
As regards the persistence, we checked whether the object

replications disappeared as the waiting time wt increased
from 1 to 2, to 5 seconds. In Table 5 we labeled as Persistent
the object replications that can be observed for each tested
waiting time, and as Temporary the ones that tend to disappear
with the increase of the waiting time. There were no cases of
object replications that appeared only for waiting time values
of 2 or 5 seconds.

We observed that for the 12 leaked activities the object
replication phenomenon was independent of the waiting time
wt, thus we hypothesized that those memory leaks were
persistent. Of course, we cannot exclude that the memory
leaks could disappear after longer testing times. For 2 activi-
ties belonging to QuasselDroid the object replications disap-
peared for wt values greater than 1 second, thus we labeled
these memory leaks as temporary.

As regards the growth trend, we compared the size val-
ues for increasing values of the number of tested events N.
In Table 5 we labeled the growth trend as Positive when

TABLE 5. Summary of the detected memory leaks.

the memory leaks size increased for sequences having an
increasing number of events from 1 to 2 to 10 and as Null the
growth trend when the memory leaks size was independent
on the number of executed sequences. No cases in which the
memory leak size decreased when the number of executed
events increased were observed. In details, we found that in 4
applications (i.e. WorldClock, Uhabits, ConnectBot and ver-
sion 0.37 of RadioDroid), the DI and DHM values increased
with the number of executed eventsN, whereas in all the other
cases they remained constant.

We have summarized our findings in Table 5, that reports,
for each combination of application under test, tested LES
and tested Activity, their characteristics of Persistence and
Growth Trend of the observed memory leaks.

In conclusion, the experimental data show that the execu-
tion of the selected LESs caused 17 potential memory leaks,
involving 13 out of 41 tested activities. In the majority of
these cases (15 out of 17), the leaks have been classified as

VOLUME 8, 2020 12225



D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

TABLE 6. FunesDroid report listing the replicated objects found after the
execution of the ActivityMain class of A3 (RadioDroid v 0.37) and a
sequence of 10 DOC events.

persistent, while in more than the half of the cases (9 out
of 17), their size was increasing with the number of executed
LES.

In the performed growth trend analysis we only reported
the cumulative size of all the replicated objects and its growth
trend. However, overlapping effects in the memory allocation
of different types of objects (for example, when some objects
occurrences increase whereas other ones decrease) may have
caused the misclassification of the growth trends. In order to
avoid such threat, we performed a finer grained analysis of
the growth trend of replicated objects of single classes and
a detailed source code analysis of the causes of the memory
leak, which will be presented in the next subsection.

E. ANALYZING THE CAUSES OF THE MEMORY LEAKS
In order to investigate the possible causes of the observed
leaks, we defined an approach for analyzing the app source
code. The approach includes three steps. We first take into
account the complete list of replicated objects produced by
FunesDroid and build the class diagram representing all the
corresponding classes and the relations among them. There-
fore, among these classes, we look for the ones whose objects
are GC roots, since they cannot be deallocated by the Garbage
Collector. If none of the replicated objects can be considered
as a GC root, we extend the search among other objects linked
to the replicated ones. Eventually, we analyze the GC root
code, looking for possible causes of the leak. As an example,
we look for the existence of a reference from the GC root
object to a Context object.

As an example, in the following we illustrate how we
used this approach to detect the cause of the memory leaks
found when executing 10 repetitions of the DOC sequence
on the version 0.37 of RadioDroid (A3). Figure 4 shows the
class diagram including all the classes of the objects reported
by the FunesDroid output report illustrated in Table 6. For
simplicity, this diagram does not report inner classes.

As Figure 4 shows, MPDClient class has a static StartDis-
covery method. We observed that this method instantiates a
Thread that is actually a GC root. Moreover, this class holds a
reference to a context object (the ActivityMain starting class).

Figure 4. Class diagram reporting the classes listed in the FunesDroid
report.

In addition, the ActivityMain class is linked to all the classes
having replicated objects.

Therefore, we ascertained that this class was actually the
cause of the leak. In fact, at each execution of a DOC
event, a new ActivityMain object was instantiated and, con-
sequently, new instances of all the other linked objects shown
in Figure 4 were created. The previous instance of Activity-
Main could not be deallocated by the Garbage Collector due
to the presence of the reference from the previousMPDClient
object that included the (previous, but still active) Thread
instance.

Analysing the Thread source code, we observed that it
executes a loop that could be ended only by the Activity
instance that allocated it. Since this Activity was no more
active, then the Thread could never be terminated. As a
consequence, the number of active Threads and replicated
objects increased as further DOC events were triggered. This
behavior caused the linear increase of both the number of
leaked objects DI and the amount of leaked memory DHM.
This bug is very severe since it caused a leak of more than
300kBytes of memory after the execution of 10 DOC events.

To further confirm the results of our analysis, we opened
an issue on the Github space of this application, by post-
ing an excerpt of the list of replicated objects found by
FunesDroid.20 The developers accepted the issue and actually
identified its cause in the MPDClient class.21 They fixed
the problem by refactoring the MPDClient class using a
WeakReference to the Activity class, as shown by commit
#0ed46d7.22 We verified the validity of their solution by
considering the successive RadioDroid v0.47 release, that
does not present this memory leak problem.

20https://github.com/segler-alex/RadioDroid/issues/306
21https://github.com/segler-alex/RadioDroid/pull/316
22https://github.com/segler-alex/RadioDroid/commit/

0ed46d7da3867a2ecb654d3b6ac868aea932617f

12226 VOLUME 8, 2020

https://github.com/segler-alex/RadioDroid/issues/306
https://github.com/segler-alex/RadioDroid/pull/316
https://github.com/segler-alex/RadioDroid/commit/0ed46d7da3867a2ecb654d3b6ac868aea932617f
https://github.com/segler-alex/RadioDroid/commit/0ed46d7da3867a2ecb654d3b6ac868aea932617f


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

F. CATEGORIZING LEAKS CAUSES
Using the approach presented in the previous section, we ana-
lyzed the causes of all the leaks we found. As a result of
this analysis, we were able to classify these causes in four
categories, that will be presented in the following.

1) CATEGORY C1: THREADS REFERRING CONTEXT OBJECTS
Threads are used in Android applications to concurrently exe-
cute some actions and improve application responsiveness. A
Thread often hold a reference to the class that started it (for
example an Activity class or a Fragment) in order to be able
to notify it the results of its execution, or simply due to bad
programming. This bad practice can cause leaks in Android
applications. For example, if a Thread is instantiated and
started by an Activity object and a double orientation change
(DOC) is executed on it, then the Activity object is destroyed
and replaced by another instance of the same class, which will
start a new Thread instance. However, the old Thread instance
cannot be destroyed by the garbage collector since it is con-
sidered a GC Root, and it holds a reference to the old Activity
instance. Thus, the garbage collector cannot deallocate the
old Activity instance and all the other objects instantiated by
it. The size of this memory leakmay increase with the number
of executed DOC events, since new objects are instantiated
each time the Entire Loop (EL) is repeated. This type of
problem may be persistent or temporary depending on the
duration of the execution of the Thread. In particular, in the
case of Threads that are terminated only by user events on
the original Activity object, the problem may be permanent.
These problems are the ones with the maximum severity,
since it can easily bring both to Out of Memory exceptions
and to possible deadlocks.

These memory leaks may be long-running or persistent,
depending on the expected duration of the Thread objects
causing them, and may have a leaked memory size that
increases with the number of executed test events.

Several instances of these problems were found in the
applications under test. In detail, in the case of A3 (Radio-
Droid v0.37), we have already presented the leaks observed
when executing DOC events. Similar problems were also
observed executing STAI and BF events. In these cases the
leaks are smaller in size since the Activity objects were not
replicated. Other problems of this category, due to Thread
objects maintaining implicit references to the Activity that
instantiated them, were detected in A5 (Uhabits), A6 (World-
Clock) and A7 (ConnectBot). An analogous case is the one
described in the motivating example reported in Section II-C,
where the ChildEventListener objects maintain references to
the Activity objects instantiating them. A possible solution
to these problems may consist in forcing the explicit termi-
nation of Threads instantiated by an Activity or Fragment
when the creator object is destroyed (e.g. in the onDestroy
method). Another possible solution is the use of WeakRef-
erences instead of references in Threads. In fact, objects
referred only through WeakReferences can be deallocated by
the garbage collector. For example, an Activity that is referred

only by aWeakReference included in a Thread object may be
deallocated.

2) CATEGORY C2: TASKS OR SERVICES REFERRING
CONTEXT OBJECTS
In the context of Android apps, there are several other con-
structs, other than Threads, that can be used to implement
concurrency. As an example, the AsyncTask class provide an
alternative to Threads for concurrent task execution. Differ-
ently from Threads, AsyncTasks are all executed in the same
background Thread according to a FIFO scheduling. For this
reason, two AsyncTasks cannot be executed concurrently.

A possible memory leak scenario involving AsyncTasks
that we found in our study is the following: an Activity instan-
tiates and starts an AsyncTask that keeps a reference to the
Activity. When executing a DOC, the Activity is destroyed
but it cannot be deallocated by the garbage collector because
the AsyncTask cannot be destroyed, since it includes a Thread
and holds a reference to it. In the meantime, another Activity
is opened but it cannot start another AsyncTask until the
first one terminates. In conclusion, the memory leak does
not involve the AsyncTask but only the Activity and all the
other objects instantiated by it. The size of the leak does
not increase as the number of sequences increases due to the
nature of the AsyncTask. These memory leaks are temporary
but long running, as the ones due to Threads.

We have observed memory leaks of this type in A1
(AMetro), in which a Task is instantiated as an internal class
of a Fragment. In this case an implicit reference is established
from the inner class (AsyncTaskLoader) to the outer class
(Fragment). This reference prevents the deallocation of the
Fragment until the AsyncTaskLoader is alive.

A possible solution to prevent this leak is also in this case
the use of WeakReferences instead of references to context
objects such as Activity or Fragment objects. Only in the case
of AsyncTask classes, this problem can be detected by the
static analysis tool Lint [29]. Moreover, automatic fixes via
refactoring have been proposed by Lin et al. [20] and Lin and
Dig [30].

3) CATEGORY C3: STATIC FIELDS REFERRING CONTEXT
OBJECTS
A static class always represents a GC root, i.e. an element
that cannot be deallocated by the garbage collector. If such a
class refers a context object (for example an Activity), then it
prevents its possible deallocation.

We found amemory leak of this type inA2 (QuasselDroid),
in which there is a static reference in the MainActivity class
pointing to itself, which prevents the deallocation of the
Activity after a DOC event, as well as that of all the objects
it instantiates. We observed that the size of this memory leak
is constant (since the static field cannot be replicated) and
appeared to be persistent (since the leak did not disappear
with larger waiting times wt). A possible solution to these
problems consists in the explicit update of the references

VOLUME 8, 2020 12227



D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

provided by the static fields, in order to allow the GC to
deallocate the referred Context Objects.

4) CATEGORY C4: TEMPORARY LEAKS DUE TO LATE
RELEASE OF MEMORY
Some temporary memory leaks can be due to the relative
slowness in releasing the memory caused by framework
objects.

We found an example of this leak cause in the app A4
(RadioDroid v.0.47), in which the Fragments instantiated
by the Activity are still in memory after performing the
Garbage Collector. According to the results of our tool, this
memory leak appears to be constant and persistent, but in
reality it will be automatically solved successively, since this
fragment does not in turn refer to other objects that cannot
be deallocated.

We observed a similar problem in A8 (Equate), in which
a dynamic Fragment is dynamically redrawn after each
sequence of BF or STAI events, while the old Frag-
ment instance is temporarily retained by the FragmentMan-
ager object.

Another example was found in A2 (QuasselDroid) when
BF events were executed. In this case the memory leaks
are due to a binding with a Service that does not termi-
nate together with the Activity calling it. In this case, our
experiments were able to demonstrate the temporary nature
of this leak, since it was detected only with a waiting time
of 1 second.

Temporary leaks generally do not represent severe prob-
lems, but they are a relevant cause of false positives for testing
tools that are not able to measure the leak persistence.

G. STUDY CONCLUSIONS
The study showed us the feasibility of the FunesDroid tech-
nique in finding memory leaks tied to the Android Activity
lifecycle and confirmed the suitability of the tool in sup-
porting the characterization of the obtained leaks in terms
of their size, persistence, and growth trend. The study also
showed the usefulness of the information reported by Funes-
Droid about the observed memory replications for finding
the causes of memory leaks. Of course, these results have
to be considered as preliminary, due to the limitedness of
the considered sample of apps involved in the study. Further
experiments involving a wider set of apps, having different
characteristics, will be needed in order to extend the validity
of the obtained results.

VI. RELATED WORK
Several works have been proposed in the literature that are
aimed at detecting and fixing memory leaks in managed run-
time environments based on virtual machines. In the context
of Java applications, several techniques based on the analysis
of the trend of the size of the heapmemory [31]–[33], or, more
specifically, on the analysis of the objects stored in the heap
memory [34]–[36] have been proposed. In particular, several
techniques which analyze the staleness of the heap objects
have been proposed [37]–[43]. In addition, there are some

commercial tools for the automatic detection of memory
leaks, such as Plumbr.23

Recently, the problem of memory leaks has become promi-
nent in the context of mobile applications due to the limited
resources of mobile devices. The Android OS commercial
success along with its open-source nature, led the researchers
to focus on this mobile platform.

The techniques found in literature for memory leak detec-
tion in the context of Android apps can be classified in two
main categories: (1) techniques based on static analysis of the
source code of the apps and (2) techniques based on dynamic
analysis, monitoring and testing of the apps.

Techniques belonging to the first category can be carried
out in a completely automatic way, but, differently from our
technique, they require the source code of the apps under test
and they can only find some potential memory leaks causes,
without any estimation of their severity. For example, Guo
et al. [15] proposed a static analysis approach to detect leaks
due to resources that are not correctly released after their
use. The technique proposed by Blackshear et al. [19] finds
memory leak causes due to incorrectly managed references
on the basis of a combination of static analysis and symbolic
execution. Another specific analysis technique is the one
proposed by Lin textitet al. [20] and Lin and Dig [30], that
have focused their attention of the detection and fixing of
memory leak problems due to an incorrect programming of
asynchronous tasks. Qian and Zhou [18] proposed a tech-
nique to prioritize test cases of a test suite according to their
likelihood to cause memory leaks. Their approach is based on
amachine learningmodel that predicts for each input test case
its likelihood to cause a memory leak given its code features.

More general contributions are the ones of Palomba et al.
[21] and Toffalini et al. [14], who proposed lists of pro-
gramming patterns (i.e. bad smells) that can cause memory
leaks and techniques to automatically detect them. Palomba
et al. [21] proposed aDoctor, a code smell detector that iden-
tifies 15 Android-specific code smells including some smells
potentially able to cause leaks. ADoctor analyzes the Abstract
Syntax Tree produced by the compiler in order to find these
smells. More recently, Toffalini et al. [14] proposed a static
analysis technique and a tool for the automatic detection
of potential memory leaks in Android applications, due to
three different causes. They demonstrated the commonality
of memory leaks in open source apps in the context of a study
involving 500 apps available both on F-Droid and on Google
Play. They manually validated a subset of the potential mem-
ory leaks found by the proposed tool, by monitoring the heap
memory using the Android Memory Profiler utility provided
by the Android framework [28].

In addition, Android programmers often use Lint [29],
a static analysis tool integrated in the Android Studio pro-
gramming environment, for the detection of a large and
extensible set of bad smells, including some smells related
to memory leaks.

23https://plumbr.io/

12228 VOLUME 8, 2020

https://plumbr.io/


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

TABLE 7. Qualitative comparison between techniques and tools for dynamic memory leaks detection.

As regards the second category of techniques, which are
based on dynamic analysis, monitoring and testing of the
apps, the oldest relevant contribution is the one of Araujo
et al. [9]. These authors proposed in 2013 a leak detection
technique based on monitoring the trend of heap memory size
in an Android app in response to a stress testing session car-
ried out with Monkey. In 2014, Shahriar et al. [44] compiled
a list of some specific causes of memory leaks and proposed
some possible test cases able to evaluate if they can cause
crashes or exceptions.

Several works in the literature have pointed out that
Android apps suffer from issues that can be attributed to
Activity Lifecycle mishandling, including memory leaks.

Yan et al. [17] proposed in 2013 a technique and a freely
available tool called LeakDroid for the automatic generation
of test cases exposing memory leaks and threading issues in
Android applications. Their technique adopts a GUI model-
based testing approach to produce test cases that perform
repeated executions of events that should have neutral effects
on resource consumption and should not lead to increases in
resource usage. Among these neutral sequences of events,
it considers sequences that exercised the Activity lifecycle
loops, i.e. the EL and VL loops and provides a report of the
growth of the used resources. Zhang et al. refined in [24]
the notion of neutral sequence of GUI events proposed in the
prior work [17]. They exploited this notion to systematically
and automatically generate test cases from a static control-
flow model of Android apps to detect resource leaks. Test
case execution and leak detection were carried out with less
manual effort with respect to their prior work, but still need
some app-specific knowledge to provide additional manual
inputs to some events from the tester, e.g., to decide which
item to click in a list, or which string to enter in a text field.
With respect to these works, our approach does not need any
knowledge of the app under test, it is able to test also the FL
loop and it provides detailed reports of the leaked objects.

Jun et al. [16] designed LeakDAF, a fully automated
testing approach for detecting leakages of Activity and
Fragment components in Android apps. Their approach com-
bines the automated app UI exploration with the analysis
of Android-specific Heap Profiling (hprof) files to identify
leaked activities and fragments. To this aim, their explo-
ration strategy systematically tests each Activity encoun-
tered during the app exploration by exercising the EL
loop. LeakDAF carries out a memory dump only when the
app crashes or when a predefined number of lifecycle events
has been executed. LeakDAF inspects the dumps by checking

framework-specific properties that reveal whether memory
leaks occurred. FunesDroid instead does not depend on any
app exploration technique and is able to directly test the
app activities. Moreover, FunesDroid has the objective to
evaluate the size and growth trend of the detected memory
leaks, whereas LeakDAF only reports the number of leaks
observed in each specific testing session.

Finally, a tool that is freely available to developers is
LeakCanary [23]. LeakCanary is a memory leak detection
library that has to be included in the source code of the
app under test. It dynamically investigates the heap memory
during the app execution, by searching for replicated objects
and reporting them in a hprof output file. LeakCanary helps
developers to dinamically find the occurrence of memory
leaks while they interact with the app under test. With respect
to our approach, the main limitations of LeakCanary are that
it can be used only for open source apps (since the app has to
be rebuilt after the insertion of some testing parameters), and
that it cannot be used in the context of a completely automated
testing process.

In Table 7 we qualitatively compare FunesDroid against
six techniques and tools for Android memory leak detection
that are based on dynamic analysis, testing, or monitoring.
The Table reports: the Reference to the paper describing the
technique, the Name of the tool implementing the technique
if it exists, the Tool free Availability, the fully automation
property, the type of executed tests, the observed effects of
the leaks, and the observed characteristics of the found leaks.
The last line of the Table reports the characteristics of the
FunesDroid approach proposed in this paper.

As the Table shows, FunesDroid presents the following
characteristics: (1) it is implemented in a tool that is freely
available and usable on current Android applications; (2) it
implements a completely automated testing process; (3) it
allows to observe memory leaks at a fine level of details (in
terms of sets of replicated objects); (4) it is able to provide
a characterization of the memory leaks in terms of their size,
persistence and growing trend. Even if other approaches pro-
posed in the literature present some of these same character-
istics, none of these works provide all these characteristics at
the same time. This finding may be considered a FunesDroid
peculiar point of strength.

VII. CONCLUSION
In this paper we presented FunesDroid, a testing technique
and a tool for the automatic black box detection of memory
leaks tied to the Activity Lifecycle in Android apps. The

VOLUME 8, 2020 12229



D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

technique is based on the execution of repetitions of three
different sequences of neutral events exercising the Activ-
ity Lifecycle.

Differently from the static analysis approaches proposed
in the literature, which only detect causes of potential mem-
ory leaks, FunesDroid is able to trigger real memory leaks
and characterize their severity. Unlike most existing dynamic
analysis approaches for finding memory leaks, ours is not
invasive to the source code of the apps. In addition, the Funes-
Droid tool is freely available.

The proposed tool was exploited in a study whose results
confirmed the diffusion of this issue in real apps and showed
that more than a third of 283 open source apps published in
F-Droid are affected by these leaks. In the paper, we also
reported the results of a second study where we used Funes-
Droid for characterizing the size, persistence and growth
trend of the obtained leaks. Moreover, we exploited the
information provided by the tool to find the causes of the
observed leaks.

The proposed memory leak detection approach presents
some limitations. The first limitation is that FunesDroid is
only able to detect potential memory leaks and that a further
source code analysis of the app is needed to confirm the actual
presence of memory leaks. However, the experimental results
that we collected in the second study were encouraging, since
we were able to confirm all the leaks that were considered.
Another limitation is that FunesDroid limits itself to directly
launch an Activity by an Intent call, disregarding the cases
in which the Activity is launched by other activities at run-
time. Therefore, we cannot exclude that additional potential
memory leaks may be reported in these other app execution
scenarios. To overcome this limitation, in future work we plan
to explore further app behaviors by integrating FunesDroid
with tools for the automatic GUI exploration of the apps, such
as the Android GUI Ripper we presented in [45]. Moreover,
we intend to improve the FunesDroid ability to test Activities
by adopting heuristic-based strategies to define specific input
values in the Intent call.

In future work we also intend to carry out a study for
investigating the proportion of memory leaks due to lifecycle
changes in real Android apps by exploiting bug repositories
mining and reported leaks classification. Finally, we want
to further investigate the causes of observed memory leaks.
To this aim, we plan to combine static and dynamic analysis
approaches for automatically classifying the causes of mem-
ory leaks.

ACKNOWLEDGMENT
The authors would like to thank R. Sellitto and G. D’Alterio
for their contributions to the prototyping of the FunesDroid
tool and to the analysis of some of the found memory leaks.

REFERENCES
[1] D. Amalfitano, V. Riccio, A. C. R. Paiva, and A. R. Fasolino, ‘‘Why

does the orientation change mess up my Android application? From GUI
failures to code faults,’’ Softw. Test. Verification Reliab., vol. 28, no. 1,
p. e1654, Jan. 2018. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/stvr.1654

[2] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyande, and J. Klein, ‘‘Automated
testing of Android apps: A systematic literature review,’’ IEEE Trans. Rel.,
vol. 68, no. 1, pp. 45–66, Mar. 2019.

[3] P. Tramontana, D. Amalfitano, N. Amatucci, and A. R. Fasolino, ‘‘Auto-
mated functional testing of mobile applications: A systematic map-
ping study,’’ Softw. Qual. J., vol. 27, no. 1, pp. 149–201, Mar. 2019,
doi: 10.1007/s11219-018-9418-6.

[4] S. R. Choudhary, A. Gorla, and A. Orso, ‘‘Automated test input generation
for Android: Are we there yet? (E),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automat. Softw. Eng. (ASE), Lincoln, NE, USA, Nov. 2015, pp. 429–440.

[5] D. Amalfitano, N. Amatucci, A. M. Memon, P. Tramontana, and
A. R. Fasolino, ‘‘A general framework for comparing automatic testing
techniques of Android mobile apps,’’ J. Syst. Softw., vol. 125, pp. 322–343,
Mar. 2017.

[6] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, ‘‘Software rejuvenation:
Analysis, module and applications,’’ in 25th Int. Symp. Fault-Tolerant
Comput. Dig. Papers, Nov. 2002, pp. 381–390.

[7] M. Grottke, R. Matias, and K. S. Trivedi, ‘‘The fundamentals of software
aging,’’ in Proc. IEEE Int. Conf. Softw. Rel. Eng. Workshops (ISSREWksp),
Nov. 2008, pp. 1–6.

[8] C. Weng, J. Xiang, S. Xiong, D. Zhao, and C. Yang, ‘‘Analysis of software
aging in Android,’’ in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops
(ISSREW), Oct. 2016, pp. 78–83.

[9] J. Araujo, V. Alves, D. Oliveira, P. Dias, B. Silva, and P. Maciel,
‘‘An investigative approach to software aging in Android applications,’’
in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2013, pp. 1229–1234.

[10] D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono,
‘‘Software aging analysis of the Android mobile OS,’’ in Proc. IEEE 27th
Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2016, pp. 478–489.

[11] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, ‘‘Analysis of preventive
maintenance in transactions based software systems,’’ IEEE Trans. Com-
put., vol. 47, no. 1, pp. 96–107, 1998.

[12] F. Machida and N. Miyoshi, ‘‘Analysis of an optimal stopping problem
for software rejuvenation in a deteriorating job processing system,’’ Rel.
Eng. Syst. Saf., vol. 168, pp. 128–135, Dec. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832016305841

[13] A. Göransson, Efficient Android Threading: Asynchronous Processing
Techniques for Android Applications (Programming/Android). Newton,
MA, USA: O’Reilly, 2014. [Online]. Available: https://books.google.
it/books?id=T141ngEACAAJ

[14] F. Toffalini, J. Sun, and M. Ochoa, ‘‘Practical static analysis of context
leaks in Android applications,’’ Softw., Pract. Exper., vol. 49, no. 2,
pp. 233–251, Feb. 2019. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85056271576&doi=10.10022fspe.
2659&partnerID=40&md5=0e0803fd929feae0044c6f76fc73e54f

[15] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, ‘‘Characteriz-
ing and detecting resource leaks in Android applications,’’ in Proc.
28th IEEE/ACM Int. Conf. Automat. Softw. Eng. (ASE), Nov. 2013,
pp. 389–398.

[16] M. Jun, L. Sheng, Y. Shengtao, T. Xianping, and L. Jian, ‘‘LeakDAF:
An automated tool for detecting leaked activities and fragments of Android
applications,’’ in Proc. IEEE 41st Annu. Comput. Softw. Appl. Conf.
(COMPSAC), vol. 1, Jul. 2017, pp. 23–32.

[17] D. Yan, S. Yang, and A. Rountev, ‘‘Systematic testing for resource leaks
in Android applications,’’ in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng.
(ISSRE), Nov. 2013, pp. 411–420.

[18] J. Qian and D. Zhou, ‘‘Prioritizing test cases for memory leaks in Android
applications,’’ J. Comput. Sci. Technol., vol. 31, no. 5, pp. 869–882,
Sep. 2016, doi: 10.1007/s11390-016-1670-2.

[19] S. Blackshear, B.-Y. E. Chang, and M. Sridharan, ‘‘Thresher: Precise
refutations for heap reachability,’’ in Proc. 34th ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI), 2013, pp. 275–286. [Online].
Available: http://doi.acm.org/10.1145/2491956.2462186

[20] Y. Lin, S. Okur, and D. Dig, ‘‘Study and refactoring of Android asyn-
chronous programming (t),’’ in Proc. 30th IEEE/ACM Int. Conf. Automat.
Softw. Eng., 2016, pp. 224–235. [Online]. Available: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-84963852358&doi=10.1109%2fASE.
2015.50&partnerID=40&md5=6f8c7c0067245374ff3b1dcf33ced077

[21] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘Lightweight detection of Android-specific code smells: The aDoctor
project,’’ inProc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Feb. 2017, pp. 487–491.

12230 VOLUME 8, 2020

http://dx.doi.org/10.1007/s11219-018-9418-6
http://dx.doi.org/10.1007/s11390-016-1670-2


D. Amalfitano et al.: Do Memories Haunt You? Automated Black Box Testing Approach

[22] F. Toffalini, J. Sun, and M. Ochoa, ‘‘Static analysis of context leaks in
Android applications,’’ in Proc. 40th Int. Conf. Softw. Eng., Softw. Eng.
Pract., 2018, pp. 215–224. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85049689380&doi=10.1145%2f3183519.
3183530&partnerID=40&md5=7e9677446a7fc409edf6f3ec1ca4e99c

[23] LeakCanary. A Memory Leak Detection Library for Android.
Accessed: Dec. 15, 2019. [Online]. Available: https://github.com/square/
leakcanary

[24] H. Zhang, H. Wu, and A. Rountev, ‘‘Automated test generation for detec-
tion of leaks in Android applications,’’ in Proc. IEEE/ACM 11th Int.
Workshop Autom. Softw. Test (AST), May 2016, pp. 64–70.

[25] P. Dubroy. (May 2011).Memory Management for Android Apps. [Online].
Available: https://dubroy.com/memory_management_for_android_apps.
pdf

[26] Y. Qiao, Z. Zheng, Y. Fang, F. Qin, K. S. Trivedi, and K.-Y. Cai, ‘‘Two-level
rejuvenation for Android smartphones and its optimization,’’ IEEE Trans.
Rel., vol. 68, no. 2, pp. 633–652, Jun. 2019.

[27] V. Riccio, D. Amalfitano, and A. R. Fasolino, ‘‘Is this the lifecycle
we really want?: An automated black-box testing approach for Android
activities,’’ in Proc. Companion ISSTA/ECOOPWorkshops (ISSTA), 2018,
pp. 68–77, doi: 10.1145/3236454.3236490.

[28] Android Studio Memory Profiler. Accessed: Dec. 15, 2019. [Online].
Available: https://developer.android.com/studio/profile/memory-profiler
Last

[29] Android Lint. [Online]. Available: http://tools.android.com/lint/overview
[30] Y. Lin and D. Dig, ‘‘Refactorings for Android asynchronous

programming,’’ in Proc. 30th IEEE/ACM Int. Conf. Automat. Softw. Eng.
(ASE), Nov. 2015, pp. 836–841. [Online]. Available: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-84963863713&doi=10.1109%2fASE.
2015.100&partnerID=40&md5=a1ec26127198b21fd6695b67cb66a917

[31] V. Sor, P. Ou, T. Treier, and S. N. Srirama, ‘‘Improving statistical approach
for memory leak detection using machine learning,’’ in Proc. IEEE Int.
Conf. Softw. Maintenance, Sep. 2013, pp. 544–547.

[32] M. Jump and K. S. Mckinley, ‘‘Cork: Dynamic memory leak detection for
garbage-collected languages,’’ SIGPLAN Not., vol. 42, no. 1, pp. 31–38,
Jan. 2007, doi: 10.1145/1190215.1190224.

[33] H. Yu, X. Shi, and W. Feng, ‘‘LeakTracer: Tracing leaks along the way,’’
in Proc. IEEE 15th Int. Work. Conf. Source Code Anal. Manipulation
(SCAM), Sep. 2015, pp. 181–190.

[34] K. Chen and J.-B. Chen, ‘‘Aspect-based instrumentation for locating mem-
ory leaks in java programs,’’ in Proc. 31st Annu. Int. Comput. Softw. Appl.
Conf. (COMPSAC), vol. 2, Jul. 2007, pp. 23–28.

[35] G. Xu and A. Rountev, ‘‘Precise memory leak detection for java software
using container profiling,’’ in Proc. ACM/IEEE 30th Int. Conf. Softw. Eng.,
May 2008, pp. 151–160.

[36] E. K. Maxwell, G. Back, and N. Ramakrishnan, ‘‘Diagnosing memory
leaks using graph mining on heap dumps,’’ in Proc. 16th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining (KDD), 2010, pp. 115–124.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-77956202108&doi=10.1145%2f1835804.1835822&partnerID=40&
md5=25600d6db76d467b2b105fc11f3a656a

[37] D. Rayside and L. Mendel, ‘‘Object ownership profiling: A technique for
finding and fixing memory leaks,’’ in Proc. 22nd IEEE/ACM Int. Conf.
Automat. Softw. Eng. (ASE), 2007, pp. 194–203, doi: 10.1145/1321631.
1321661.

[38] M. D. Bond and K. S. Mckinley, ‘‘Tolerating memory leaks,’’ SIG-
PLAN Notices, vol. 43, no. 10, pp. 109–126, Oct. 2008, doi: 10.1145/
1449955.1449774.

[39] M. D. Bond and K. S. Mckinley, ‘‘Leak pruning,’’ SIGPLAN Notices,
vol. 44, no. 3, pp. 277–288, Feb. 2009, doi: 10.1145/1508284.1508277.

[40] G. Novark, E. D. Berger, and B. G. Zorn, ‘‘Efficiently and precisely
locating memory leaks and bloat,’’ SIGPLAN Notices, vol. 44, no. 6,
pp. 397–407, May 2009, doi: 10.1145/1543135.1542521.

[41] G. Xu, M. D. Bond, F. Qin, and A. Rountev, ‘‘Leakchaser: Helping
programmers narrow down causes of memory leaks,’’ in Proc. 32nd
ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), 2011,
pp. 270–282. [Online]. Available: http://doi.acm.org/10.1145/1993498.
1993530

[42] S. Lee, C. Jung, and S. Pande, ‘‘Detecting memory leaks through intro-
spective dynamic behavior modelling using machine learning,’’ in Proc.
36th Int. Conf. Softw. Eng. (ICSE), 2014, pp. 814–824, doi: 10.1145/
2568225.2568307.

[43] C. Jung, S. Lee, E. Raman, and S. Pande, ‘‘Automated memory leak
detection for production use,’’ in Proc. 36th Int. Conf. Softw. Eng. (ICSE),
2014, pp. 825–836, doi: 10.1145/2568225.2568311.

[44] H. Shahriar, S. North, and E. Mawangi, ‘‘Testing of memory leak in
Android applications,’’ inProc. IEEE 15th Int. Symp. High-Assurance Syst.
Eng., Jan. 2014, pp. 176–183.

[45] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, ‘‘Using GUI ripping for automated testing of Android
applications,’’ in Proc. 27th IEEE/ACM Int. Conf. Automat. Softw. Eng.
(ASE), 2012, pp. 258–261, doi: 10.1145/2351676.2351717.

DOMENICO AMALFITANO received the Ph.D.
degree in computer engineering and automation
from theUniversity of Naples Federico II, in 2011.

He is currently an Assistant Professor with the
Department of Electrical Engineering and Infor-
mation Technology (DIETI), University of Naples
Federico II, Italy. His main research interests
include in the areas of software engineering, soft-
ware testing, software testing automation, reverse
engineering, software maintenance, program com-

prehension, and software development processes improvement. He applied
his research activity in the contexts of Mobile Apps, Web Applications, and
Automotive Embedded Software.

VINCENZO RICCIO received the degree in com-
puter engineering and the Ph.D. degree from the
University of Naples Federico II, in 2015 and
2019, respectively. He is currently a Postdoctoral
Researcher with the Software Institute of Univer-
sità della Svizzera Italiana, Lugano, Switzerland.
His research is focused on software engineering
applied to mobile and machine learning-based
applications. His research fields include reverse
engineering, testing, comprehension, and software
quality.

PORFIRIO TRAMONTANA received the degree
in computer engineering and the Ph.D. degree
from the University of Naples Federico II,
in 2001 and 2005, respectively. He is currently
an Assistant Professor with the University of
Naples Federico II. His research is focused on
software engineering applied to mobile and Web
applications. His research fields include reverse
engineering, testing, maintenance, comprehen-
sion, migration of legacy systems, and software
quality.

ANNA RITA FASOLINO received the M.S. Lau-
rea degree in electronic engineering and the Ph.D.
degree in electronic and computer engineering
from the University of Naples Federico II.

She was an Assistant Professor with the Uni-
versity of Bari, Italy. She is currently an Associate
Professor with the Department of Electrical Engi-
neering and Information Technology, University
of Naples Federico II, Italy. She has coauthored
more than 100 articles in peer-reviewed interna-

tional journals, books, and proceedings of conferences and workshops. Her
research interests are in the area of software engineering with a focus on
software testing, mobile app testing, reverse engineering, Web engineering,
and embedded software engineering. In such fields, she developed and
participated in numerous R&D projects. She serves as a member of the
program committee for several conferences in software engineering. She
has won distinguished paper awards at ICSM 2002 and ICSM 2012 for her
work on Web testing and automated mobile app GUI testing. She is also a
Co-Organizer of special issues and workshops related to testing of event-
based software. She co-chaired the Doctoral Symposium at the 10th IEEE
International Conference on Software Testing, Verification and Validation
(ICST 2017). She is an Academic Editor of the Journal of Systems and
Software, PeerJ Computer Science, open access journal, and Computers
Journal MDPI.

VOLUME 8, 2020 12231

http://dx.doi.org/10.1145/3236454.3236490
http://dx.doi.org/10.1145/1190215.1190224
http://dx.doi.org/10.1145/1321631.1321661
http://dx.doi.org/10.1145/1321631.1321661
http://dx.doi.org/10.1145/1449955.1449774
http://dx.doi.org/10.1145/1449955.1449774
http://dx.doi.org/10.1145/1508284.1508277
http://dx.doi.org/10.1145/1543135.1542521
http://dx.doi.org/10.1145/2568225.2568307
http://dx.doi.org/10.1145/2568225.2568307
http://dx.doi.org/10.1145/2568225.2568311
http://dx.doi.org/10.1145/2351676.2351717

	INTRODUCTION
	BACKGROUND ON MEMORY LEAKS DUE TO ANDROID ACTIVITY LIFECYCLE
	MEMORY MANAGEMENT AND MEMORY LEAKS IN ANDROID
	ANDROID ACTIVITY LIFECYCLE
	MOTIVATING EXAMPLE

	THE FUNESDROID APPROACH
	FuneSDroid IMPLEMENTATION

	EXPLORATORY STUDY: FINDING OBJECT REPLICATIONS
	SECOND EXPLORATORY STUDY: CHARACTERIZING MEMORY LEAKS
	OBJECTS
	VARIABLES AND METRICS
	EXPERIMENTAL PROCEDURE
	RESULTS
	DATA ANALYSIS

	ANALYZING THE CAUSES OF THE MEMORY LEAKS
	CATEGORIZING LEAKS CAUSES
	CATEGORY C1: THREADS REFERRING CONTEXT OBJECTS
	CATEGORY C2: TASKS OR SERVICES REFERRING CONTEXT OBJECTS
	CATEGORY C3: STATIC FIELDS REFERRING CONTEXT OBJECTS
	CATEGORY C4: TEMPORARY LEAKS DUE TO LATE RELEASE OF MEMORY

	STUDY CONCLUSIONS

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	DOMENICO AMALFITANO
	VINCENZO RICCIO
	PORFIRIO TRAMONTANA
	ANNA RITA FASOLINO


