
Is This the Lifecycle We Really Want? An Automated Black-Box
Testing Approach for Android Activities

Vincenzo Riccio
University of Naples Federico II

Naples, Italy
vincenzo.riccio@unina.it

Domenico Amalfitano
University of Naples Federico II

Naples, Italy
domenico.amalfitano@unina.it

Anna Rita Fasolino
University of Naples Federico II

Naples, Italy
anna.fasolino@unina.it

ABSTRACT
Android is today the world’s most popular mobile operating system
and the demand for quality to Android mobile apps has grown
together with their spread. Testing is a well-known approach for
assuring the quality of software applications but Android apps have
several peculiarities compared to traditional software applications
that have to be taken into account by testers. Several studies have
pointed out that mobile apps suffer from issues that can be attrib-
uted to Activity lifecycle mishandling, e.g. crashes, hangs, waste of
system resources. Therefore the lifecycle of the Activities compos-
ing an app should be properly considered by testing approaches. In
this paper we propose ALARic, a fully automated Black-Box Event-
based testing technique that explores an application under test for
detecting issues tied to the Android Activity lifecycle. ALARic has
been implemented in a tool. We conducted an experiment involving
15 real Android apps that showed the effectiveness of ALARic in
finding GUI failures and crashes tied to the Activity lifecycle. In
the study, ALARic proved to be more effective in detecting crashes
than Monkey, the state-of-the practice automated Android testing
tool.

ACM Reference Format:
Vincenzo Riccio, DomenicoAmalfitano, andAnna Rita Fasolino. 2018. Is This
the Lifecycle We Really Want? An Automated Black-Box Testing Approach
for Android Activities. In (ISSTA Companion/ECOOP Companion’18), July
16–21, 2018, Amsterdam, Netherlands. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3236454.3236504

1 INTRODUCTION
The number of users of mobile technology and smartphones is
steadily growing and is forecast to surpass 2.5 billion in 2019 [18].
Today, Android is the world’s most popular mobile operating sys-
tem [19]. More and more people around the world rely on mobile
software applications (apps) to carry out various daily tasks. Thus,
the demand for quality to mobile apps has grown together with
their spread. As a consequence, mobile developers should give
proper consideration to the quality of their applications by adopt-
ing suitable quality assurance techniques, such as testing. Several

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5939-9/18/07. . . $15.00
https://doi.org/10.1145/3236454.3236490

techniques and tools are currently available for testing an Android
app before it is published to the market [3]. Test automation tools
can facilitate software testing activities since they save humans
from routine, time-consuming and error-prone manual tasks [7].

Mobile apps have several peculiarities compared to traditional
software applications that have to be taken into account by testing
techniques and tools [16]. In particular, the small size of mobile
devices introduced the need to have on the screen one single focused
app at a time. In Android an app is composed by one or more
Activities; each Activity represents a single GUI that allows the
user to interact with the app.

The Android Framework defines a peculiar lifecycle for Activity
instances in order to manage them transparently to the user who
can navigate through an app and switch between apps without
losing his progress and data; at the same time, it allows not to waste
the limited resources of a mobile device, such as memory and bat-
tery. The official Android Developer Guide1 stresses the relevance
of the Activity lifecycle feature and warns the developers of the
threats it introduces in several sections; therefore it provides rec-
ommendations and guidelines to help programmers in the correct
handling of the Activity lifecycle.

Despite this, several works in the literature have pointed out
that mobile apps, including industrial-strength ones, suffer from
issues that can be attributed to Activity lifecycle mishandling [4]
[15] [17] [5]. Zein et al. [22] performed a systematic mapping study
of mobile application testing techniques involving 79 papers and
identified possible areas that require further research. Among them,
they emphasized the need for specific testing techniques targeting
Activity lifecycle conformance.

Some solutions have been presented in the literature to address
this problem. A part of them proposed testing techniques that rely
on existing testing artifacts [1, 8] or GUI models [21] to automat-
ically generate test cases able to properly exercise the Activity
lifecycle. Another work [17] detects through static analysis bugs
that may cause a corrupt state when an app is paused, stopped,
or killed. Their solution can also automatically generate test cases
to reproduce bugs but it needs to modify the app code in order to
verify the statically detected issues.

Another group of approaches leverages dynamic analysis to
find issues tied to the Activity lifecycle [9, 15]. These dynamic
techniques mostly focus on finding a specific type of failure, such
as crashes [9, 15] or resource leaks [10]. However, none of them
addressed GUI failures that consist in the manifestation of an unex-
pected GUI state. As pointed out in [5], GUI failures tied to the Ac-
tivity lifecycle represent a widespread category of issues in Android

1https://developer.android.com/

https://doi.org/10.1145/3236454.3236504
https://doi.org/10.1145/3236454.3236504
https://developer.android.com/

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino

apps and there is the need to define effective testing techniques to
detect them.

To overcome these limitations, in this paper, we propose ALARic
(Activity Lifecycle Android Ripper), a fully automated black-box
event-based dynamic testing technique.

ALARic is able to detect both GUI failures and app crashes related
to the lifecycle of the Activities of an app by systematically testing
each Activity GUI state encountered during the automatic app
exploration. To this aim, it leverages mobile-specific events able
to exercise the Activity lifecycle and specifically designed testing
oracles. Our solution does not require any prior knowledge of
the app under test, app modification or manual intervention. The
effectiveness of ALARic in detecting issues tied to the Activity
lifecycle was demonstrated in an experiment involving 15 real
Android apps. The experiment also showed that ALARic was more
effective in detecting crashes tied to the Activity lifecycle than the
state-of-the practice automated Android testing tool, i.e.Monkey,
the most widely used tool of this category in industrial settings.

The paper improves the literature on automated GUI testing with
the following contributions:

• a novel automated GUI testing technique to detect GUI fail-
ures and crashes tied to the Android Activity lifecycle. In
particular, ALARic is the first dynamic testing technique that
is able to address the issue of GUI failures;
• an experiment involving real Android apps showing the
validity of the proposed technique.

The remainder of the paper is structured as follows. Section
2 describes the background and Section 3 provides an overview
of the proposed testing approach. Section 4 presents design and
implementation details about the tool we developedwhile in Section
5we describe the experiment that was performed. Section 6 provides
related work. Finally, Section 7 draws the conclusions and presents
future work.

2 BACKGROUND
2.1 Activity Lifecycle
Activities are the essential building blocks of Android apps; an
Activity can be seen as a single GUI through which the users can
access the features offered by the app. AnActivity is implemented as
a subclass of the Activity class, defined in the Android Framework.
The Activity instances exercised by the user are managed as an
Activity stack by the Android OS. A user usually navigates through,
out of, and back to an app but only the Activity at the top of the
stack is active in the foreground of the screen. To ensure a smooth
transition between the screens, the other Activities are kept in the
stack. This allows the user to navigate to a previously exercised
Activity without losing its progress and information. Moreover, the
system can decide to get rid of an Activity in background to free
up memory space.

To provide this rich user experience, Android Activities have
a proper lifecycle, transitioning through different states. Figure 1
shows the Activity lifecycle as it is illustrated in the official Android
Developer Guide2. The rounded rectangles represent all the states

2https://developer.android.com/reference/android/app/Activity.html

an Activity can be in; the edges are labeled with the callback meth-
ods that are invoked by the Android platform when an Activity
transits between states.

The Android framework provides seven callback methods that
are automatically invoked as an Activity transits to a new state.
They can be overridden by the developer to allow the app to perform
specific work each time a given change of the Activity state is
triggered.

The Activity visible in the foreground of the screen and inter-
acting with the user is in the Resumed state, either it is created
for the first time or resumed from the Paused or Stopped states.
When an Activity has lost focus but is still visible (e.g., a system
modal dialog has focus on top of the Activity), it is in the Paused
state; in this state, the app usually maintains all the user progress
and information. When the user navigates to a new Activity, the
previous one is put in the Stopped state; it still retains all the user
information but it is no longer visible to the user. However, when
an Activity is in Paused or Stopped states, the system can drop it
from memory if the system resources are needed by other apps and
therefore the Activity transits to the Destroyed state. When it is
displayed again to the user, it is restarted and its saved state must
be restored.

Figure 1 also highlights the three key loops of the Activity life-
cycle. In the following, according to the Android Developer Guide,
we call these loops Entire Loop, Visible Loop, and Foreground Loop,
respectively, and report event sequences to exercise each of them:

(1) The Entire Loop (EL) of an Activity consists in the Resumed-
Paused-Stopped-Destroyed-Created-Started-Resumed sequence
of states. This loop can be exercised by events that cause
a configuration change, e.g. an orientation change of the
screen, that destroys the Activity instance and then recre-
ates it according to the new configuration3;

(2) The Visible Loop (VL) corresponds to the Resumed-Paused-
Stopped-Started-Resumed sequence of states during which
the Activity is hidden and then made visible again. There are
several event sequences able to stop and restart an Activity,
e.g. turning off and on the screen or putting the app in back-
ground and then in foreground again through the Overview
or Home buttons;

(3) The Foreground Loop (FL) of anActivity involves the Resumed-
Paused-Resumed state sequence. The transition Resumed-
Paused can be triggered by opening non full-sized elements
such as modal dialogs or semi-transparent activities that
occupy the foreground while the Activity is still visible in
background. To trigger the transition Paused-Resumed the
user should discard this element.

2.2 Issues Tied to the Activity Lifecycle
Android App developers should correctly implement Activities,
taking into account their lifecycle. This ensures the app works
the way users expect and does not exhibit aberrant behaviors as
it transitions through different lifecycle states at runtime. Good
implementation of the lifecycle callbacks and the awareness of the
Android Framework features can help the programmer to develop

3https://developer.android.com/guide/components/activities/state-changes.html

https://developer.android.com/reference/android/app/Activity.html

Is This the Lifecycle We Really Want?
ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands

Figure 1: The Android Activity Lifecycle key loops

(a) Before the applica-
tion of the orientation
change

(b) After the application of the ori-
entation change

Figure 2: Crash exposed by Dropbox app

apps that behave as expected and prevent a number of issues, such
as Crashes and GUI failures.

2.2.1 Crashes. A crash occurs when an app stops functioning
properly and exits unexpectedly. When an app crashes, Android
terminates its process and displays a dialog to let the user know
that the app has stopped4. It is a very undesirable app behavior and,
indeed, the most blatant one. We are interested in crashes tied to the
Activity lifecycle, i.e. crashes triggered by events that exercise the
Activity lifecycle. We report an example of crash that we detected
in Dropbox version 27.1.25, the Android client app offered by the
popular file hosting service. If the user selects the third item of
the Camera Uploads settings, a modal dialog appears (see Figure
2(a)). When the user changes the orientation of the device, the app
suddenly stops working, as shown in Figure 2(b).

2.2.2 GUI Failures. GUI failures are a relevant class of failures
that may disrupt the user experience and consist in the manifes-
tation of an unexpected GUI state [11]. We focus on GUI failures
triggered by exercising the three Activity lifecycle key loops. In
4https://developer.android.com/topic/performance/vitals/crash.html
5https://dropbox.zendesk.com, Dropbox Support request ID #5199918

(a) Before the applica-
tion of the double ori-
entation change

(b) After the applica-
tion of the double ori-
entation change

Figure 3: GUI Failure exposed by Agram app

particular, there may be a GUI failure tied with the Activity lifecy-
cle when the GUI state before the Activity is stopped, paused or
destroyed is different from the GUI state displayed after the user
returns to the Activity [1, 5, 14, 17, 21]. GUI failures manifest in
several ways, i.e. unexpected GUI objects may appear in wrong
positions, objects may be rendered with wrong properties, or impor-
tant objects may disappear from the GUI [5]. We report an example
of GUI failure that we found in version 2.7.3 of QKSMS, an Android
application that displays anagrams in English and that is available
for free on the Google Play Store. If the user chooses to create
random words, a modal Dialog appears prompting the number of
words the user wants to generate (see Figure 3(a)). When the users
change the orientation of the device twice, they naturally expect
that the GUI state will remain the same. Instead, the app will exhibit
an unexpected GUI state when the Activity is destroyed and then
recreated due to the configuration change, i.e. the dialog disappears
and a list of random words is rendered on the screen as shown in
Figure 3(b).

3 THE ALARIC APPROACH
In this section we present the approach adopted by ALARic in
testing Android apps.

ALARic implements a fully automated online testing technique
since it explores the application under test (AUT) and at the same
time detects aberrant behaviors tied to the Activity lifecycle, i.e.
Crashes and GUI failures. ALARic exercises the AUT through input
event sequences, being Android apps event-driven software systems
[6].

The exploration strategy adopted by ALARic sends random input
events to the AUT and systematically executes an input event
sequence able to exercise one of the three key Activity lifecycle
loops each time a new GUI is encountered for the first time during
the app exploration. We define Lifecycle Event Sequence a sequence
of events able to trigger one of the key loops of the Activity lifecycle.
After the Activity lifecycle loop is exercised, ALARic evaluates
whether the app exposes any issue related to the Activity lifecycle.

To exercise the three key lifecycle loops, we leverage three Life-
cycle Event Sequences, i.e., the Double Orientation Change (DOC),
the Background Foreground (BF) and the Semi-Transparent Activity

https://developer.android.com/topic/performance/vitals/crash.html

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino

Intent (STAI) event sequences. We chose these Lifecycle Event Se-
quences since each of them is able to exercise a different lifecycle
loop. In order to detect GUI failures, we chose Lifecycle Event Se-
quences for which the GUI state of the Activity should be retained
after their executions [21].

The Double Orientation Change (DOC) event sequence exercises
twice the EL loop and consists in a sequence of two consecutive
orientation change events. We used the DOC event sequence since
applying a single orientation change may not be sufficient to detect
GUI failures, as some minor differences in GUI content or views
are indeed acceptable between landscape and portrait orientations,
and the GUI state of the app may differ after a single orientation
change event. After a second consecutive orientation change, the
GUI content and layout should be the same as before the first
orientation change [5].

The Background Foreground (BF) sequence puts the app in back-
ground through the tap of the Home button and then pushes the
app again in foreground. It exercises the VL loop.

As regards the FL loop, it is exercised by the Semi-Transparent
Activity Intent (STAI) event sequence. It consists in starting a semi-
transparent Activity that pauses the current foreground Activity
and then returning to it tapping the Back Button.

The ALARic approach is configurable and allows the tester to
set up one type of Lifecycle Event Sequence to apply in order to
exercise the Activity lifecycle in all the GUI states exposed by an
Activity that are encountered during the app exploration.

Figure 4 shows a real example of how ALARic works. In this
example, we used the DOC Lifecycle Event Sequence to test the
Amaze app version 3.1.2 RC4. The snapshots represent the GUI
states encountered during the automatic exploration. The red edges
represent Lifecycle Event Sequences, whereas the black edges are
random planned events. At each exploration iteration, ALARic
describes the current GUI state and verifies whether it has been
explored before during the exploration. The GUI states encountered
for the first time, i.e. A, C, E, H, L, are exercised by a DOC. Whereas,
the GUI states already encountered, i.e. D, F, G, J, K, are exercised
by random planned events. The tool compares the GUI states before
and after the DOC event and checks whether they are not different.
ALARic found 3 GUI failures in this exploration, i.e. after the 3th,
5th and 9th iteration. Moreover, the app crashed after the triggering
of the 12th event. When a crash occurs, ALARic starts the app from
scratch. The exploration terminates either after the triggering of a
predefined number of events or after a given testing time.

4 THE ALARIC TOOL
The ALARic approach has been implemented in the ALARic Tool6.
Fig. 5 shows the tool architecture that is composed by two compo-
nents, i.e., the ALARic Engine and the Test Executor.

The ALARic Engine component is responsible for implementing
the business logic of the testing approach. It analyzes the GUI
currently rendered by the AUT, plans the next input event sequence
to be fired and checks the presence of failures. It does not interact
directly with the AUT but delegates this task to the Test Executor
component that is able to fire input event sequences on the AUT and

6The ALARic tool is available for download at this link https://goo.gl/ypTMVs.

to fetch the description of the current GUI in terms of its composing
widgets and their attribute values.

The tool takes as input a Configuration File that is needed to set
up the testing process. In this file, the tester specifies the Lifecycle
Event Sequence to be triggered and the termination condition. As
for the termination condition, it is possible to set either a maximum
execution time or the number of input event sequence to be fired.
The ALARic Engine fetches the AUT by exploiting its .apk or its
source code and then installs it on the Test Executor.

During the automatic app exploration, ALARic saves the descrip-
tions of the encountered GUIs. At each exploration iteration, it loads
these descriptions for comparing them against the GUI currently
rendered on the screen. In this way, it tests only the GUI states
encountered for the first time.

The tool produces a Report File about the detected crashes and
GUI Failures. The report contains for each GUI failure: (1) the app
name, (2) the Activity name where the failure was detected, (3)
the sequence of events that led to the failure and (4) the executed
Lifecycle Event Sequence type. Moreover, for the GUI Failures, it
also contains the description and the screenshot of the GUI states
before and after the application of the Lifecycle Event Sequence.
As for the crashes, it contains the unhandled exception type and its
stack trace.

4.1 ALARic Engine
The online testing process implemented by the ALARic tool is de-
scribed by the UML Activity diagram shown in the ALARic Engine
component of Figure 5. It extends the generic online testing algo-
rithm presented in the framework proposed by Amalfitano et al.
[2]. The steps belonging to the original algorithm are reported in
white, whereas the ones introduced by our approach are colored in
gray.

The ALARic Engine performs an iterative process of automatic
GUI exploration where sequential steps are executed until a given
termination condition is reached.

In the Describe Current GUI step, a description of the current GUI
state is inferred, according to a GUI description abstraction crite-
rion. The description of a GUI state includes the (attribute,value)
pairs assumed by its components at runtime. The description of the
current GUI state is compared with the ones previously encoun-
tered to evaluate whether it has never been met before during the
exploration. The Exercise Activity Lifecycle and Evaluate Oracles
steps are executed when a new GUI state is encountered for the first
time. Otherwise, the Plan Events and Run Events steps are executed.

In the Exercise Activity Lifecycle step, one predefined Lifecycle
Event Sequence is triggered. The Evaluate Oracles step allows the
verification of oracles appositely crafted to detect the presence
of specific types of Activity lifecycle issues. The current ALARic
implementation is able to evaluate two oracles, i.e. GUI failures and
crashes. As for GUI failures, similarly to [1, 5, 14, 17, 21], the tool is
able to recognize failures that occur when the GUI states before and
after the application of a Lifecycle Event Sequence are different. As
for the crashes, ALARic checks whether an unhandled exception
occurs after the execution of a Lifecycle Event Sequence.

The Plan Events step plans the input event sequences that will be
fired on the current GUI according to a uniform random scheduling

https://goo.gl/ypTMVs

Is This the Lifecycle We Really Want?
ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands

Figure 4: ALARic testing example

Figure 5: The ALARic tool architecture

strategy. In the Run Events step, the planned input event sequence
is actually executed.

Finally, in the Update Termination Condition step, it is evaluated
whether a maximum testing time or a maximum number of fired
input events, defined by the tester, is reached.

The Engine requires the REST APIs provided by the Test Executor
component to carry out its activities. It calls the Init Testing Session
and Stop Testing Session APIs at the begin and at the end of the
testing process for installing and uninstalling the application under
test, respectively. The Fire Events API is used for triggering events,
whereas the Get GUI Description one is exploited for retrieving the
description of the current GUI.

4.2 Test Executor
The Test Executor component is in charge of executing the testing
activities of the ALARic Engine on the AUT. It is able to interact

with both a physical device and a Android Virtual Device (AVD)7.
It is made of two components, i.e. Robot and Driver that interact
through Java socket technology.

The Driver component is in charge to decouple the business
logic implemented in the ALARic Engine from the device where the
AUT is installed. The Robot should run on the same device where
the AUT is installed and interacts with it by firing events and
describing the GUIs rendered at runtime. This component exploits
the APIs provided by the Robotium library8 the Android Debug
Bridge (ADB)9.

5 EXPERIMENTAL EVALUATION
In this section, we report the study we carried out to investigate the
ability of the ALARic tool in detecting issues tied to the Activity

7https://developer.android.com/studio/run/emulator.html
8https://github.com/RobotiumTech/robotium
9https://developer.android.com/studio/command-line/adb.html

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino

lifecycle. We consider as tied to the the Activity lifecycle the issues
that are exposed by Lifecycle Event Sequences. The study aimed at
answering the following research questions:

RQ1 How effective is the ALARic tool in detecting issues tied to
the Activity lifecycle in real Android apps?

RQ2 How does the effectiveness of the ALARic tool in detecting
issues tied to the Activity lifecycle in real Android apps
compare to the state-of-the-practice?

Some tools have been proposed in literature that exploit dynamic
analysis and can find crashes tied to the Activity lifecycle [9, 15].
However, we were unable to compare the ALARic tool against
them, since they are either no longer available, or are not supported
anymore and are unable to target the latest Android OS and SDK
versions. Therefore, we considered the Monkey10 tool since it is
regarded as the current state-of-practice for automated Android
app testing [12, 13], being the most widely used tool of this cate-
gory in industrial settings [23, 24]. It is mainly used in robustness
testing processes for revealing app crashes. Moreover, we could not
compare the ALARic effectiveness in finding GUI failures against
other existing dynamic techniques since our work is the first one
to address this issue.

5.1 Objects
As objects of the evaluation, we selected 15 apps that are distributed
by the official Google app store11 whose source code is available in
the F-Droid repository12. In this way we selected apps that were
representative of the typical apps available to Android users. The
availability of the source code allowed us to better analyze the
detected failures. We chose F-Droid since it is a well-known reposi-
tory of Free and Open Source Software (FOSS) applications for the
Android platform that has been widely used in other studies on
Android testing proposed in literature [7, 12–15]. Table 1 reports
for each selected app its name, the version we considered and its
size.

Table 1: Object Apps

App Name Version Apk Size (kB)
A1 A Time Tracker 0.21 115
A2 Port Knocker 1.0.9 2,200
A3 Who Has My Stuff? 1.0.27 104,3
A4 Agram 1.4.1 723
A5 Alarm Klock 1.9 640
A6 Padland 1.3 2,000
A7 Syncthing 0.9.1 19,300
A8 Anecdote 1.1.2 1,800
A9 Amaze File Manager 3.1.2 RC4 5,900
A10 Google Authenticator 2.21 708
A11 BeeCount 2.3.9 3,200
A12 FOSDEM companion 1.4.6 1,300
A13 Periodical 0.30 925
A14 Taskbar 3.0.2 1,600
A15 SpaRSS 1.11.8 1,400

10https://developer.android.com/studio/test/monkey.html
11https://play.google.com/store/apps
12https://f-droid.org/

5.2 Metrics
To evaluate the effectiveness of ALARic in detecting GUI failures,
we considered the cardinality of the following sets:
• DGFDOC : distinct GUI Failures triggered by the DOC event
sequence
• DGFBF : distinct GUI Failures triggered by the BF event se-
quence
• DGFSTAI : distinct GUI Failures triggered by the STAI event
sequence
• DGFTotal : distinct GUI Failures tied to the Activity lifecycle
triggered by either DOC, BF, or STAI event sequences

Analogously, to evaluate the effectiveness of the tools in finding
crashes, we considered the number of elements of each of the fol-
lowing sets:
• DCDOC : distinct Crashes triggered by the DOC event se-
quence
• DCBF : distinct Crashes triggered by the BF event sequence
• DCSTAI : distinct Crashes triggered by the STAI event se-
quence
• DCTotal : distinct Crashes tied to the Activity lifecycle trig-
gered by either DOC, BF, or STAI event sequences

Since the same issue may be exposed multiple times during a
testing process, we decided to count only the occurrences of distinct
issues. We made these assumptions: (1) GUI failures are distinct
if they involved not equivalent start states or not equivalent end
states [5], and (2) crashes are distinct if they do not refer to the
same type of unhandled exception or do not have the same stack
trace [9, 15].

5.3 Experimental Procedure
The experimental procedure we followed was organized in two
steps, namely (1) App Testing and (2) Data Collection & Validation.

5.3.1 App Testing. this step was conducted in two phases. In
the former phase, three different testing processes were executed.
In each process, all the objects were tested by three runs of the
ALARic tool configured to plan and execute only one Lifecycle
Event Sequence type, i.e. DOC, BF, and STAI. We did three runs for
each configuration to mitigate the non determinism of the apps and
of the random exploration techniques [7]. Each run lasted an hour.
A total of nine one-hour testing runs for each app were performed.

In the latter phase, we tested the object apps using the Monkey
tool, in order to compare the tools effectiveness. Monkey is an
automated testing tool for Android apps, belonging to the Android
SDK. This tool adopts a random testing approach, which sends a
random stream of UI and system-level events to the app under test.

We performed a testing process where nine one-hour Monkey
testing runs were executed for each app. We executed nine Monkey
runs as with ALARic in order to ensure a fair comparison among
the tools.

In this phase, we set the maximum verbosity level of the Monkey
tool in order to produce a more accurate and rich output containing
information about the seeded events and the detected crashes.

All the testing processes have been performed on the same test-
ing infrastructure which consists of a desktop PC having an Intel(R)
Core(TM) i7 4790@3.60GHz processor and 8 GB of RAM, running

https://developer.android.com/studio/test/monkey.html
https://play.google.com/store/apps
https://f-droid.org/

Is This the Lifecycle We Really Want?
ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands

a standard Nexus 5 AVD with Android 6 (API 23). The host PC was
equipped with the Ubuntu OS, version 16.04. In order to assure that
each run was executed in the same conditions, all the runs were
executed on AVDs created from scratch.

5.3.2 Data Collection & Validation. At the end of the testing
processes we gathered all the reports produced by the considered
tools and recruited a team composed by two Ph.D. students and a
Postdoctoral Researcher having knowledge on Software Debugging
and Android Testing.

The team was asked to analyze the failures exposed by the tools
and to validate them. To this aim the team examined the reports
produced by the considered tools to identify the distinct failures
exposed by each tool. Unlike ALARic, Monkey does not offer a
detailed description of each failure exposed at runtime [15]. To
extract the crashes detected by Monkey from the output it gener-
ated, the team manually inspected these files to find the exception
stack traces instances and the events that led to them. Then they
exploited the information contained in the issue reports to repro-
duce all the distinct failures. To this aim they manually tried to
reproduce the reported issues on a real LG G4 H815 device equipped
with Android 6.0. In this way we can consider only real failures
caused by incorrect application logic and discard the ones caused
by issues tied to the testing infrastructure and the virtual device.
As regards the GUI failures, they also assessed whether each failure
was actually the manifestation of an incorrect GUI state rather than
an intended behavior of the application, e.g. a timer that continues
to count down or a news feed that adds new elements may cause
the GUI state to be different after the execution of a Lifecycle Event
Sequence. To guarantee that the issues were actually tied to the
Activity lifecycle, the team performed a debugging activity to verify
that the issues were a manifestation of faults that are exercised by
executing the Activity lifecycle. The validated distinct failures have
been used to calculate the values of the metrics.

5.4 Results and Analysis
Table 2 reports, for each app, the total number of GUI failures and
crashes that have been found by ALARic and validated by the team,
grouped by the Lifecycle Event Sequence type that triggered them.

Table 3 shows for each app the number of total crashes tied
to Lifecycle Event Sequences detected by ALARic and Monkey,
respectively. We did not compare the results regarding GUI failures
since Monkey is not able to detect them.

Overall, ALARic found 111 distinct GUI failures and 8 crashes.
The team validated as true positives 106 GUI failures and all the
crashes. All the apps exposed at least 2 GUI failures and 6 apps
exhibited at least one crash. The DOC triggered the highest number
(96) of GUI failures and it was able to expose GUI failures in all the
considered apps. A total of 22 GUI failures tied to BF were found
in 9 apps. STAI triggered 9 GUI failures in 5 apps. As concerns the
crashes, the DOC triggered the highest number of crashes (7) in 5
apps. A total of 3 crashes related to the BF sequence were found in
2 apps, whereas STAI triggered 3 crashes in 2 apps.

We analyzed the relations among the sets of issues exposed
by each of the three considered Lifecycle Event Sequences. As
shown by the Venn Diagrams reported in Fig. 6, in some cases
the same issue was exposed by more than one type of Lifecycle

(a) GUI Failures triggered by the Lifecy-
cle Events

(b) Crashes triggered by the Lifecycle
Events

Figure 6: Issues detected by ALARic

Event Sequence, whereas other issues were triggered by only one
Lifecycle Event Sequence type.

As Fig. 6(a) shows, 7 out of the 106 GUI failures detected by
ALARic were found by all the three considered Lifecycle Event
Sequences. Among the 96 GUI failures triggered by DOC, 84 were
not found by BF and STAI. 8 GUI failures have been triggered only
by BF. Fig. 6(b) illustrates that only the 2 crashes exposed byA9were
triggered by all the three considered Lifecycle Event Sequences. 5
out of 8 crashes were triggered only by DOC. Instead, the crash
exposed by A11 was triggered by BF and STAI but not by DOC.

In conclusion, these results suggest that DOC is more likely
to expose issues tied to the Activity lifecycle since it has been
the most effective in revealing GUI failures and crashes in our
experiment. However, BF doesn’t have to be neglected since it has
shown the capability to discover issues that the other Lifecycle
Event Sequences missed. Also STAI that exercises the FL and has
a limited impact on the Activity lifecycle, led to the detection of
issues.

On the basis of the obtained results we were able to answer the
first research question RQ1 and conclude that:

ALARic detected issues tied to the Activity lifecycle in all the ana-
lyzed apps. It exposed both GUI failures and crashes. Lifecycle Event
Sequences that exercise diverse key lifecycle loops showed different
capabilities in exposing app issues.

Regarding the comparison between ALARic and Monkey, the
data in Table 3 shows that for 6 out of 7 apps ALARic was able
to find more crashes tied to the Activity lifecycle than Monkey.
In A4 both the tools exposed the same crash. Moreover, both the
tools detected an additional crash in A9 that was not tied to the
Activity lifecycle. To better understand this result we analyzed in
detail the reports produced by Monkey. It was able to seed events
that exercise the Activity lifecycle, e.g. orientation changes, back
button, but it applied them without a proper strategy, failing in
discovering several issues tied to the Activity lifecycle that were
found by ALARic, instead. On the basis of this data we could answer
to RQ2 concluding that:

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino

Table 2: Experimental Results

GUI Failures Crashes

App #DGFTotal #DGFDOC #DGFBF #DGFSTAI #DCTotal #DCDOC #DCBF #DCSTAI
A1 12 9 5 1 0 0 0 0
A2 5 5 0 0 0 0 0 0
A3 5 4 3 0 0 0 0 0
A4 8 8 0 0 1 1 0 0
A5 4 3 2 1 0 0 0 0
A6 8 8 0 0 1 1 0 0
A7 7 7 0 0 1 1 0 0
A8 2 1 1 1 0 0 0 0
A9 17 17 3 3 2 2 2 2
A10 5 4 2 0 0 0 0 0
A11 8 6 4 3 1 0 1 1
A12 3 3 1 0 0 0 0 0
A13 4 3 1 0 0 0 0 0
A14 13 13 0 0 0 0 0 0
A15 5 5 0 0 2 2 0 0
Total 106 96 22 9 8 7 3 3

Table 3: Experimental Comparison

App #DCALARic #DCMonkey
A1 0 0
A2 0 0
A3 0 0
A4 1 1
A5 0 0
A6 1 0
A7 1 0
A8 0 0
A9 2 0
A10 0 0
A11 1 0
A12 0 0
A13 0 0
A14 0 0
A15 2 1
Total 8 2

ALARic outperformed the state-of-the-practice tool in the ability to
detect issues tied to the Activity lifecycle. In total it triggered more
crashes than Monkey.

5.5 Lesson Learned
The experimental results showed that Lifecycle Event Sequences
are able to exercise the Activity lifecycle and to expose failures.
The debugging activity we performed in the failure validation step
showed us that the faults causing the failures were mostly located
outside the code that overrides the lifecycle callback methods.

As an example, the crash found in A11 occurs when the onSave
InstanceState() callback method of the EditProjectActivity
is called, but its cause is located inside the LinkEditWidget class
that defines a custom GUI object. The programmer indeed over-
rode the onSaveInstanceState() callback method to save at run-
time the state of the LinkEditWidget custom GUI object contained
in the EditProjectActivity Activity. To this aim, the program-
mer correctly serialized the LinkEditWidget objects and prop-
erly implemented the Serializable interface in the class that
defines the LinkEditWidget object. However, the user-defined
LinkEditWidget contains android.widget.Spinner GUI compo-
nents that do not implement the Serializable interface. There-
fore a java.io.NotSerializableException is thrown at runtime

when the lifecycle of the EditProjectActivity Activity is exer-
cised. Another example is related to a failure that regarded 57 out
of the 106 GUI failures detected by ALARic. It involved Dialog
objects disappearing from the GUI after the execution of a Lifecycle
Event Sequence. This failure affected most of the considered apps
since 12 out of 15 apps exposed it. A Dialog is a small window that
does not fill the screen and is normally used for modal events that
require users to take an action before they can proceed. In most
cases, the fault causing these failures has been localized in objects
calling directly the public show method offered by the Dialog or
the AlertDialog Builder classes to display a Dialog on screen.
This will correctly pop up the dialog on the screen but the dialog
will disappear when the Activity is destroyed and recreated in its
lifecycle. Instead, Android guidelines explicitly prescribe that the
control of a dialog GUI object (deciding when to show, hide, dismiss
it) should be managed by the DialogFragment class, which ensures
a correct handling of Lifecycle Event Sequences13.

Thanks to this analysis, we learned two lessons that could be
useful for Android developers. The former lesson is that they should
correctly use the Android framework components since they may
cause inconsistencies in the app behavior at runtime when Lifecy-
cle Event Sequences occur. The latter is that they should look for
faults that may affect the lifecycle of the Activities also outside the
methods that override the lifecycle callbacks.

5.6 Threats to Validity
This section discusses the threats that could affect the validity of
the results obtained in the study [20].

5.6.1 Internal Validity. We know that the failures we observed
might not be caused exclusively by Lifecycle Event Sequences,
but also by alternative factors, such as the execution platform or
the timing between consecutive events. To mitigate this threat,
during the validation step every detected failure was manually
reproduced on a real device to exclude that they were tied to the
testing infrastructure. A controlled experiment involving different
Android OS versions, types of device, and time intervals between
events should be carried out to further investigate this aspect.

13https://developer.android.com/reference/android/app/DialogFragment.html

https://developer.android.com/reference/android/app/DialogFragment.html

Is This the Lifecycle We Really Want?
ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands

5.6.2 External validity. We are aware that the small sample of
considered Android apps may affect the generalizability of our
experimental results and we intend to confirm our findings in the
future by performing a wider experimentation involving a larger
number of apps.

6 RELATEDWORK
Activity lifecycle has been identified as a major source of issues for
Android apps by different works in the literature. Therefore, testing
techniques aimed at exposing those issues have been proposed.

Franke et al. [8] presented a unit testing based approach for
testing conformance of app lifecycle. Their approach considers
Activities as units to be tested. Lifecycle-dependent properties have
to be manually extracted from functional requirement specification
and the Activity lifecycle callback methods are used to test such
properties exploiting assertions. Unlike our fully-automated black-
box technique, this approach heavily relies on manual effort to
extract requirements and to define assertion-based unit test cases
and requires the availability of the app source code.

The work of Zaeem et al. [21] is based on the intuition that
different mobile apps and platforms share a set of features referred
to as User-Interaction Features and that there is a common sense
of expectation of how an app should respond to these features.
Among these features they considered also the triggering of the key
lifecycle loops. They propose an automated model-driven test suite
generation approach and implement it in QUANTUM, a framework
that automatically generates a test suite to test the user-interaction
features of a given app leveraging app agnostic test oracles based on
the GUI states exposed by the app. Differently from our approach,
QUANTUM needs a prior knowledge of the app under test since it
requires a user-generated app GUI model as input.

Adamsen et al. [1] proposed a tool named THOR that systemati-
cally amplifies test cases by injecting neutral event sequences that
should not affect the functionality of the app under test and the
output of the original test cases. They focus on event sequences
that are usually neglected in traditional testing approaches, includ-
ing the ones that exercise the key lifecycle loops. THOR leverages
existing test cases. Instead, our approach does not require existing
testing artifacts.

Shan et al. [17] focused on a specific fault class due to the in-
correct handling of the data that should be preserved when the
key Activity loops are exercised. They named KR errors the failures
caused by these faults. These authors proposed an automated static
analysis technique for finding KR errors. They also designed a tool
that generates a sequence of input events that lead to the app state
where the KR error manifests. Unlike our work, this solution needs
app modification to verify the failures tied to Activity lifecycle by
tracking app fields and dumping GUI states in the Activity lifecycle
callback methods.

G. Hu et al. [9] introduced AppDoctor, a testing system able to
perform a quick dynamic analysis of the app under test that aims
at revealing app crashes. Our testing approach is able to detect
also GUI failures. Their proposed app analysis, called approximate
execution, is faster than real execution since it exercises an app by in-
voking directly event handlers. Our technique instead triggers real
events because they represent better real user interactions. Since

their approximation may introduce several false positives, AppDoc-
tor automatically tries to verify the detected bugs by reproducing
them using real events. Like us, they pointed out the relevance of
exercising the Activity lifecycle in mobile testing. Therefore they
introduced approximations of lifecycle events among the events
supported by AppDoctor.

Moran el al. [15] designed Crashscope, a fully automated testing
approach for discovering, reporting, and reproducing Android app
crashes. They also propose a fully automated black-box testing
approach but they focus only on a specific failure type, i.e. app
crashes, whereas our approach is able to find also GUI failures.
They identify the double orientation change lifecycle event as a
major source of crashes and thus their automated app exploration
performs a double rotation each time they encounter a rotatable
Activity. Whereas, our approach is able to perform three different
types of lifecycle events able to cover the three key Activity lifecycle
loops. Moreover, our exploration strategy performs a lifecycle event
each time it encounters a GUI state never encountered before during
the exploration.

Jun et al. [10] proposed LeakDAF, a fully automated testing
approach for detecting memory leaks. Like our work, they propose
a testing technique targeting Android app components lifecycle
conformance that exploits an automated app exploration technique
and does not need app modification or manual interaction. They
test the apps with two lifecycle events that exercise only the Entire
Lifecycle loop. Whereas, our approach studies the effect of events
that exercise also the Visible Lifecycle and Foreground Lifecycle
loops. They aim at detecting a specific memory leak type, i.e. the
leakage of Activity and Fragment Android app components. Instead,
we aim at proposing a testing technique able to detect different
types of issues related to the lifecycle of Android app Activities.

7 CONCLUSIONS & FUTUREWORK
In this paper we presented ALARic, an Android automated test-
ing technique that combines the traditional testing approaches
based on dynamic app exploration with a strategy that fires three
mobile-specific events able to expose issues tied to peculiar Android
platform features. We focused on the Android Activity lifecycle
management and designed a technique that systematically exercises
the lifecycle of app Activities, to detect GUI failures and crashes.

Our technique has been implemented in a tool and validated in a
study involving 15 real world apps that showed the ability of the tool
to automatically detect issues tied to theActivity lifecycle. The study
also showed that ALARic was more effective in detecting crashes
than standard random tools, such as Monkey, and allowed us to
learn some lessons useful for Android app testers and developers.

As a future work, we plan to extend the ALARic tool by adding
other Lifecycle Event Sequences in addition to the three already
implemented. We intend to propose and implement a set of oracles
able to detect other issues tied to the Activity lifecycle, such as mem-
ory leaks and threading issues. To better prove the effectiveness
of ALARic, we plan to conduct a wider experimentation involving
a larger set of Android apps and considering different configura-
tions of the tool. Finally, we plan to extend our approach to test the
lifecycle of other app components, such as services, fragments and
content providers.

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino

REFERENCES
[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-

atic Execution of Android Test Suites in Adverse Conditions. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015).
ACM, Baltimore, MD, USA, 83–93. http://doi.acm.org/10.1145/2771783.2771786

[2] Domenico Amalfitano, Nicola Amatucci, Atif M. Memon, Porfirio Tramontana,
and Anna Rita Fasolino. 2017. A general framework for comparing automatic
testing techniques of Android mobile apps. Journal of Systems and Software 125
(2017), 322–343.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, and Bryan
Robbins. 2013. Testing Android Mobile Applications: Challenges, Strategies, and
Approaches. Advances in Computers 89 (2013), 1–52.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. 2015.
MobiGUITAR: Automated Model-Based Testing of Mobile Apps. IEEE Software
32, 5 (Sept 2015), 53–59.

[5] Domenico Amalfitano, Vincenzo Riccio, Ana C. R. Paiva, and Anna Rita Fasolino.
2018. Why does the orientation change mess up my Android application? From
GUI failures to code faults. Softw. Test., Verif. Reliab. 28, 1 (2018).

[6] F. Belli, M. Beyazit, and A. Memon. 2012. Testing is an Event-Centric Activ-
ity. In Software Security and Reliability Companion (SERE-C), 2012 IEEE Sixth
International Conference on. 198–206.

[7] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet? (E). In Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) (ASE ’15). IEEE Computer Society, Washington, DC, USA, 429–440.

[8] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol. 2012. Testing Con-
formance of Life Cycle Dependent Properties of Mobile Applications. In 2012
IEEE Fifth International Conference on Software Testing, Verification and Validation.
241–250.

[9] GangHu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, Effectively
Detecting Mobile App Bugs with AppDoctor. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys ’14). ACM, New York, NY, USA, Article
18, 15 pages.

[10] M. Jun, L. Sheng, Y. Shengtao, T. Xianping, and L. Jian. 2017. LeakDAF: An
Automated Tool for Detecting Leaked Activities and Fragments of Android Appli-
cations. In 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), Vol. 1. 23–32.

[11] V. Lelli, A. Blouin, and B. Baudry. 2015. Classifying and Qualifying GUI Defects.
In 2015 IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST). 1–10.

[12] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
Evolutionary Testing of Android Apps. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 599–609.

[13] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY, USA,

94–105.
[14] Abel Méndez-Porras, Giovanni Méndez-Marín, Alberto Tablada-Rojas, Mario Ni-

eto Hidalgo, Juan Manuel García-Chamizo, Marcelo Jenkins, and Alexandra
Martínez. 2017. A distributed bug analyzer based on user-interaction features
for mobile apps. Journal of Ambient Intelligence and Humanized Computing 8, 4
(01 Aug 2017), 579–591.

[15] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and D. Poshy-
vanyk. 2016. Automatically Discovering, Reporting and Reproducing Android
Application Crashes. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST). 33–44.

[16] Henry Muccini, Antonio di Francesco, and Patrizio Esposito. 2012. Software
testing of mobile applications: Challenges and future research directions. In
Automation of Software Test (AST), 2012 7th International Workshop on. IEEE,
Zurich, Switzerland, 29–35.

[17] Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. 2016. Finding Resume and
Restart Errors in Android Applications. SIGPLAN Not. 51, 10 (Oct. 2016), 864–880.

[18] Statista. 2016. Number of smartphone users worldwide from 2014
to 2019 (in millions). https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/

[19] Statista. 2017. Global market share held by the leading smart-
phone operating systems in sales to end users from 1st quarter 2009
to 1st quarter 2017. https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/

[20] ClaesWohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

[21] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. 2014. Automated
Generation of Oracles for Testing User-Interaction Features of Mobile Apps.
In Proceedings of the 2014 IEEE International Conference on Software Testing,
Verification, and Validation (ICST ’14). IEEE Computer Society, Washington, DC,
USA, 183–192.

[22] Samer Zein, Norsaremah Salleh, and John Grundy. 2016. A Systematic Mapping
Study of Mobile Application Testing Techniques. J. Syst. Softw. 117, C (July 2016),
334–356.

[23] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated Test Input Generation for Android: Are
We Really There Yet in an Industrial Case?. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2016). ACM, New York, NY, USA, 987–992.

[24] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated Test Input Generation
for Android: Towards Getting There in an Industrial Case. In Proceedings of the
39th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP ’17). IEEE Press, Piscataway, NJ, USA, 253–262.

http://doi.acm.org/10.1145/2771783.2771786
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

	Abstract
	1 Introduction
	2 Background
	2.1 Activity Lifecycle
	2.2 Issues Tied to the Activity Lifecycle

	3 The ALARic Approach
	4 The ALARic Tool
	4.1 ALARic Engine
	4.2 Test Executor

	5 Experimental Evaluation
	5.1 Objects
	5.2 Metrics
	5.3 Experimental Procedure
	5.4 Results and Analysis
	5.5 Lesson Learned
	5.6 Threats to Validity

	6 Related Work
	7 Conclusions & Future Work
	References

