OWSM: Empowering Rego for Stateful Access Control

Massimiliano Baldo!, Fabio Ionut Ion!,

Marino Miculan'?, Matteo Paier', and Vincenzo Ricciol

L University of Udine - Dept. of Mathematics, Computer Science and Physics, Italy.
massimiliano.baldo@uniud.it, marino.miculan@uniud.it, vincenzo.riccio@uniud.it
2 Ca’ Foscari University of Venice - Dept. of Environmental Sciences, Informatics and Statistics, Italy.
3 IMT Alti Studi Lucca, Italy. matteo.paier@imtlucca.it

Abstract

Service mesh technologies have emerged as a powerful tool for managing microservices
communication. However, enforcing complex access control policies often requires stateful
mechanisms, which are not directly supported by policy languages like Rego. To address
this limitation, we propose the OPA Wrapper State Manager (OWSM). OWSM maintains
a separate state store that can be accessed during policy evaluation. This enables the spec-
ification and enforcement of stateful access control policies using Rego’s declarative syntax.
We evaluate the performance and overhead of OWSM through experiments, demonstrating
its effectiveness in enhancing the capabilities of service mesh environments.

1 Introduction

In microservice-oriented architectures, large monolithic applications are split into smaller, inde-
pendent services, often implemented using virtual machines or containers. This approach offers
numerous benefits, including scalability, resilience, and faster development cycles. However,
it also introduces significant complexity, especially when managing inter-service communica-
tion and security. Hardcoding these functionalities into each service implementation introduces
redundancy, complicates maintenance, and increases the risk of misconfigurations [6].

To address these challenges, Service Mesh (SM) technologies have emerged [4, 15]. A service
mesh is a dedicated infrastructure layer designed to handle service-to-service communication.
It provides a transparent sidecar proxy for each service, enabling features like load balancing,
traffic management, security, and observability without requiring changes to the application
code. By abstracting network complexity, service meshes decouple control functionalities from
the core business logic of applications, enabling improved maintainability and governance, while
ensuring reliable and secure communication.

While service meshes offer powerful capabilities, they demand effective governance mecha-
nisms to maintain consistency, security, and compliance. To streamline governance and auto-
mate policy enforcement, policy-based approaches have gained traction [10, 11, 12, 13]. Policy-
based governance leverages declarative domain-specific languages to define rules and constraints
that govern the behavior of services. By separating policy from implementation, organizations
can centralize policy management, ensuring consistency and reducing the risk of human error.

Among various domain-specific languages for policy authoring, Rego has emerged as a popu-
lar choice for service mesh environments [11]. Rego’s expressive syntax and powerful evaluation
engine enable the creation of sophisticated policies that can enforce a wide range of require-
ments, including security, reliability, and performance.

Rego’s functional and declarative nature allows it to access a data store for policy evaluation,
but it is limited to read-only operations. This restriction can hinder the specification of access
policies that require maintaining and updating state. For instance, a policy enforcing a rate

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

Control Plane

Controller |
Yy A
Service Controller
Data Plane
Query
(JSON)
| ; —
Sidecar
- - < (JSON)
Sidecar Proxy — Sidecar Proxy — <~
X X Decision
(JSON)
Request,
777 Event, ...
(a) A generic service mesh representation. (b) OPA’s decision flow.

Figure 1: Policy enforcement in distributed systems.

limit of 10 requests per hour from service B to service A necessitates tracking access counts
and timestamps. Similarly, as in Bell-LaPadula model, a policy granting A access to service B
based on B’s lack of access to service C' requires remembering the “B to C” access history.

These scenarios highlight the need for stateful policy enforcement, which is not directly
supported by Rego’s core capabilities. In fact, in these cases the state must be updated by the
services, thus violating the separation between business logic and policy specification.

To address the limitations of Rego’s stateless nature, in this paper we introduce the Open
policy agent Wrapper State Manager (OWSM). OWSM maintains a separate state store to track
policy-specific information, which can be accessed by Rego engine during policy evaluation.
From Rego’s JSON response, OWSM extracts state update instructions and forwards the final
authorization decision to the OPA agent, sidecar to the real service. By leveraging OWSM, we
can write stateful policies directly in Rego without modifying its syntax or evaluation engine. In
this way, services do not need to update the state with policy-specific information, thus keeping
business logic and policy specification well separated. Moreover, thanks to controlled access to
avoid inconsistencies, the data store can be shared across multiple Rego engines, allowing for
efficient and concurrent access to stateful policy-specific information.

Synopsis. In Section 2, we provide an overview of service meshes, OPA and Rego. To address its
limitations, we introduce the OPA Wrapper State Manager (OWSM) in Section 3. In Section 4,
we present the results of experiments conducted to evaluate the impact of OWSM. Finally, we
conclude in Section 5, summarizing our findings and outlining directions for future work.

2 Background and related works

2.1 Service Meshes

A Service Mesh typically consists of two main components: a controller and a set of sidecar
prozies (Figure 1a). The sidecar proxies form the data plane network, which directly handles the
flow of requests between microservices. Each proxy is responsible for intercepting all incoming
and outgoing traffic to its service, enforcing the policies received from the controller on a
separate control plane.

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

SMs can have multiple goals, here we focus on their role in authorization and authentica-
tion. Authorization determines which services or users are permitted to perform specific actions
on resources, while authentication ensures that only legitimate services can communicate with
each other. Compared to traditional orchestrator policies, SMs enable more fine-grained access
control and identity management. A key advantage of SMs is their centralized policy enforce-
ment, which simplifies the management of security policies across a distributed environment.
Policies are defined centrally and propagated to sidecar proxies, which locally enforce the poli-
cies by intercepting and evaluating requests, thus ensuring decentralized decision-making. For
each intercepted request, a proxy evaluates the authorization policy against the received data
and metadata, such as source service identity, user attributes, request headers, and requested
actions. Based on the policy evaluation, the sidecar proxy decides whether to allow or deny
the request. This enforcement occurs transparently to the services, ensuring security without
requiring modifications to application code.

2.2 Security Policies in Distributed Applications

The challenge of expressing security policies in distributed applications has been a major focus
of research and development in recent years. Existing solutions can be categorized into two
approaches: Policy via Configuration Files and Policy-as-Code.

Configuration files are collections of key-value pairs used for defining system configurations
and behaviors. This approach is widely adopted in cloud computing, including SMs. Notable
examples include Istio [15] and Linkerd [7], which leverage configuration files to encode poli-
cies in a structured and reproducible manner. However, these files inherently lack support
for conditional logic, complex data structures, and arithmetic operations. This limitation in
expressiveness hinders their suitability for defining intricate or dynamic policy requirements.

On the other hand, the Policy-as-Code paradigm [12] advocates for expressing security
policies through specialized programming languages. This approach, in contrast to traditional
configuration files, enables complex constructs like arithmetic operations and conditional control
flows, offering enhanced expressiveness and flexibility. A pioneering example of this paradigm is
XACML [8], which represents access control policies using XML and XSLT files. Notably, the
XACML specification does not encompass the design or implementation of authorization agents
(there called Policy Decision Points). More recent proposals include OpenFGA [10], a fine-
grained authorization engine drawing inspiration from Zanzibar [13] (Google’s authorization
system), and Cedar [2], a programming language for access control developed by AWS Labs,
whose semantics is rigorously formalized and verified in Lean [3].

One of the most widespread language of this category is Rego [11], part of the Open Pol-
icy Agent (OPA) project. Rego manipulates semistructured data (in JSON format): when
evaluating a request, Rego produces an object encapsulating the results of the policy evalua-
tion, enabling detailed decision-making. Due to this flexibility, Rego has been used in various
domains, ranging from cloud compliance automation to authoritative nameserver architecture
[5, 9, 14]. Moreover, policies written in XACML can be translated to Rego, and vice versa. The
widespread adoption and growing interest in Rego motivated us to focus on extending OPA’s
functionality, the official authorization engine for Rego, to address its current limitations.

A Rego policy is a collection of rules (see Figure 2). Each rule comprises a head, which
defines the decision or value to be computed, and a body, which consists of a set of conditions
or queries that must evaluate to true for the rule to be applicable. To make decisions, OPA
can access not only the information provided in the request but also additional data, seamlessly
integrated within the Rego language. This external data enriches the decision-making process.

3

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

package app.rbac
import rego.vl

By default, deny requests.
default allow := false

Allow admins to do anything.
allow if user_is_admin

W O UL W

©

10 # Allow the action if the user is granted permission to perform the action.
11 allow if {

12 # Find grants for the user.

13 some grant in user_is_granted

14 # Check if the grant permits the action.
15 input.action == grant.action

16 input.type == grant.type

17}

18

19 # user_is_admin is true if "admin" is among the user’s roles as per data.
user_roles
20 user_is_admin if "admin" in data.user_roles[input.user]

22 # user_is_granted is a set of grants for the user identified in the request.
23 # The ‘grant‘ will be contained if the set ‘user_is_granted for every...
24 user_is_granted contains grant if {

25 # ‘rolef assigned an element of the user_roles for this user...

26 some role in data.user_roles[input.user]

27 # ‘grant‘ assigned a single grant from the grants list for ’role’...
28 some grant in data.role_grants[role]

29 }

Listing 1: Example of Rego policy for RBAC.

1 {

2 "user_roles": {

3 "alice": ["admin"],

4 "bob": ["employee", "billing"],

5 "eve": ["customer"]

6 1,

7 "role_grants": {

8 "customer": [{"action": "read", "type": "dog"}, [...11,

9 "employee": [{"action": "update", "type": "dog"}, [...1],
10 "billing": [{"action": "read", "type": "finance"}, [...]]
11 }
12 %

Listing 2: Data for the RBAC example.
1 {"user": "alice", "action": "read", "object": "id123", "type": "dog"}

Listing 3: Input for the RBAC example.

1 {"allow": true, "user_is_admin": true, "user_is_granted": []}

Listing 4: Output for the RBAC example for the provided input.

Figure 2: Example of a Rego policy for RBAC (see Section 4). From top to bottom: the policy,
the data, an input for the policy evaluation and the corresponding output.

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

As Figure 1b shows, OPA performs the following steps to evaluate a policy: 1. OPA accepts
JSON-formatted inputs representing the request; 2. OPA interprets Rego rules to compute a
decision based on the request and data; 3. OPA returns the evaluation outcome to the requester
as a JSON response, which contains the outputs of all the evaluated rules.

Despite the versatility of Rego, certain use cases remain challenging due to its stateless
nature. Specifically, Rego lacks the ability to manage or persist data across requests, limiting
its applicability in scenarios that require stateful paradigms. In fact, in these situations the
update of the data object is on the programmer of the services, thus violating the separation
principle between policy specification and business logic.

3 OWSM: OPA Wrapper State Manager

In this section we present OPA Wrapper State Manager (OWSM), whose aim is to tackle OPA’s
limitations by extending it with state management capabilities. By using OWSM, developers
are freed from the burden of managing state directly within their application’s business logic
in scenarios where persistent state is crucial.

An example of an inherently stateful policy is the one regulating access to a service API
where each call costs a token; each user is given a certain number of tokens at the beginning
of the month. The policy has to keep track of token expenditure, and to reset token counters
once a month. This can not be expressed in traditional policy engines without the introduction
of additional elements that modify and maintain the number of available tokens.

Another example comes from security concerns, such as those investigated in [1, 18]. Let us
consider three services A, B and C which run at different levels of clearance, e.g., A is at higher
level than C; according to the Bell-LaPadula security model, we want to prevent data leakage
from C' towards A. To ensure this property, we want to forbid B’s requests to communicate
with C' if B has previously communicated with A. Also in this case, we need to maintain the
status of communication between services and this can be accomplished by traditional policy
engines only with the introduction of additional stateful elements in the services themselves.

Our solution relies on wrapping the OPA engine with a custom API that interacts with a
datastore in order to maintain and modify a state at runtime. Comparing with Figure la, a
sidecar proxy will interact with an OWSM instance, permitting or not a request access. There
can be multiple OWSM instances, one for each sidecar proxy in the service mesh.

3.1 Requirement definitions

A core requirement for our system is the inclusion of primitives for reading from and writing to
a state that persists across multiple policy queries. These primitives enable a policy decision
engine to dynamically update the data upon which decisions are made.

The state must be accessible by multiple instances of the decision engine. Consider a service
mesh where decision engines are deployed as sidecar proxies alongside multiple replicas of a web
server offering an API. If we aim to protect this API with the aforementioned “limited-token”
middleware, the state must be maintained consistently across all replicas. This centralized state
management is crucial to ensure that the policy “a user can access the API up to N times,
where N is the number of tokens available to the user” is enforced uniformly across all replicas.

To achieve this, our system should consist of two components: (1) a policy decision engine
that can interact with (2) a datastore. We choose OPA as the underlying policy engine and
Rego as the policy language. This choice is based on the fact that its output is a JSON object,
rendering it flexible and aiding the integration with our system.

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

Wrapper Datastore
Sidecar 2 > —2—>
Proxy
«—3— «3— «—3
— 1> 1—> OPA policy
.rego RPC
HTTP gRPC oS
API Client perver. -
["Store" data.json
<«—6— <—| 4
6 +
State |
updater 5 5>

Figure 3: Diagram of OWSM implementation. The data flow is as follows: 1. the system
receives a query from a service and adds it to OPA’s evaluation context; 2. the wrapper asks
the datastore for the current data, locking the datastore; 3. the datastore returns the data to
OPA; 4. OPA evaluates the policy and returns the result, together with the data to be updated
in the datastore; 5. the updated data is sent to the datastore, which is unlocked; 6. the result
is returned to the user, stripped of the data sent to the datastore.

3.2 Design and Implementation

To avoid directly modifying the decision engine, we wrap it with another API that receives
decision queries, gets the updated state from the datastore, and pass both of them to OPA.
Figure 3 depicts our solution implementation.

The datastore must implement some locking mechanism to ensure consistency in presence of
concurrent requests. The minimal functional API for the store must thus contain four endpoints:
two to respectively get and set the state, and two to interact with the locking subsystem.

The modification of the state is achieved by reserving a special policy name, i.e., state; this
policy can be defined by Rego rules (as any other policy), yielding a standard JSON dictionary.
This output is interpreted by the wrapper, which extracts the keys that need modification in
the datastore, removing them from the JSON. The datastore is updated accordingly, and then
unlocked, before returning the decision result to the requesting service.

From an implementation point of view, we decided to use the Go programming language
to implement both the wrapper and the datastore. This choice has been made due to the fact
that OPA is written in Go and offers a native Go library to interact with its internals.

The API of the datastore is offered via gRPC which is a universal, open source, high per-
formance Remote Procedure Call framework. More specifically, the datastore exposes a gRPC
service, called Store, with four procedures: Get, to retrieve the state; Put, to update a key with
a new value; Lock, to guarantee mutually exclusive access to concurrent clients; and Unlock,
to release the lock. The wrapper communicates with the datastore through gRPC and, finally,
exposes to the final user an HT'TP endpoint to allow for submission of decision queries, as does
OPA when used as an HTTP API. We use /query as the endpoint name.

To validate our system, we implemented the “token counter” and “three microservices” use
cases described above, and tested them using OWSM yielding a null error rate, thus proving the
higher expressiveness of OWSM compared to OPA. See Figure 4 for the corresponding code.

6

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

1 package threemicroservices

2 import rego.vl

3

4 # B can talk to C until A talks to B
1 package tokencounter (55 default allow := false
g import rego.vl 7 allow if {

1 == I n
4 default allow := false 8 :!.nput.sourc?_ " ”a
5 9 input.dest ==
6 allow if { 1(1) ¥
7 input.user == "username" .
8 data.counter > 0 12 allow 1f. { — nn
0 ¥} 13 input.source == "b
10 14 input.dest == "c"
11 state["counter"] := data.counter - 1 12 3 data.a_to_b == false
if allow

17

18 state["a_to_b"] if {

19 input.source == "a"

20 input.dest == "b"

21 }

Figure 4: The two implemented example policies for OWSM. The output for the state rule
is intercepted by OWSM and used to update the datastore. On the left the “token counter”
example, on the right the three microservices data leakage example.

4 Experimental Evaluation

In this section, we perform an experimental evaluation of OWSM to asses the efficiency and
overhead introduced in comparison to pure OPA i.e., without any stateful information.

4.1 Use cases

We consider use cases that can be expressed in both pure OPA and OWSM. These use cases
are taken from the Access Control section of the Rego Playground [17].

Use case 1 considers an RBAC model for the Pet Store API [16], which allows users to view,
adopt, and update pets. The policy governs which users can perform actions on spe-
cific resources, following a classic Role-based Access Control (RBAC) model. Users are
assigned roles, which are granted permissions to act on certain resources.

Use case 2 follows an Attribute-based Access Control (ABAC) model for the same API, where
users, resources, and actions are associated with attributes. Access decisions are made
based on these attributes.

Use case 3 aims to mitigate the “Role Explosion” problem in RBAC through hierarchical
roles. Role Explosion occurs when the number of roles in a RBAC grows exponentially as
the number of users and permissions increases, leading to a complex and unmanageable set
of roles. The example demonstrates how to implement a simple hierarchical access control
policy using a graph of related roles. Hierarchical roles help address this issue by allowing
roles to inherit permissions from other roles, reducing redundancy and simplifying role
management. Specifically, users submit requests with one or more roles, and the policy
checks if the user has the required permission by traversing the role hierarchy.

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

4.2 Research Questions and Methodology

RQ1 [Time performance] What are the characteristics of the overhead introduced by OWSM
when handling sequences of requests?

Understanding the overhead introduced by OWSM is important to evaluate its impact on
maintaining a good time performance during request handling. This overhead includes
both the computational and latency costs of managing state modification and wrapping
pure OPA.

RQ2 [Concurrent scalability] What is the behaviour of OWSM as the number of concurrent
requests increases?

Understanding the behaviour of OWSM under increasing concurrency (i.e., number of
concurrent requests to the datastore) is essential for evaluating its concurrent scalability.
This requires analysing response times as the number of simultaneous requests grows.

To evaluate response timing, we rely on “Apache Benchmark” (ab) version 2.4.62, a standard
tool for benchmarking web servers. We patched the source code of ab to support outputting
timings in microseconds, instead of rounding them to the nearest millisecond. Our patch
modifies the ap_round ms macro to remove the rounding operation and return the raw runtime
time value (already in microseconds) and does not modify the functionality of ab.

For comparing OPA and OWSM, we run experiments on both for each use case. At the
beginning of each experiment, we perform a warmup of OPA and OWSM by running 10 non-
concurrent requests. This avoids spurious high times from the first system query.

For RQ1 we run batches of 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200 and
102400 requests to both OPA and OWSM, and we calculate the mean and the interquartile
range (IQR) of the response times for each batch.

For RQ2 we run 50000 total requests with increasing levels of concurrency (100, 650, 1200,
1750, 2300, 2850, 3400, 3950, 4500, 5050, 5600, 6150, 6700, 7250, 7800, 8350, 8900, 9450 and
10000 parallel requests). We then calculate the mean and IQR of the response times for each
concurrency level.

We use a server with Debian GNU/Linux 12 at kernel version 6.10-28 with a Intel(R)
Core(TM) 19-10900 CPU @ 2.80GHz (20 threads) and 128 GB of RAM.

4.3 Threats to validity

To account for the inherent randomness in the measurements, we performed multiple requests
in each configuration and assessed the statistical significance of the comparison between the
IQRs of OPA and OWSM by using the Mann—Whitney U test, a non-parametric test used to
compare differences between two independent samples. This test provides a measure of whether
one group tends to have larger values than the other. Specifically, we calculated the U statistic
and its corresponding p-value to determine if the observed differences between the systems were
statistically significant at a significance level of a = 0.05.

Our assessment of the observed trends is supported by fitting a linear regression model to
the data and analysing the coefficient of determination (R?).

We mitigate the threats to external validity (i.e. generalization) by considering three rep-
resentative and diverse use cases directly drawn from the official OPA playground.

8

OWSM: Empowering Rego for Stateful Access Control

Baldo et al.

10 le7
--¢-- OPA | -4 ora)
1400 J l - owsM | | owsM -
1‘, S - } ‘ ,, l R RS 0.8 -
1200 — -
3 | T | g j
1 1000 go06 .
3 3
o o
© 800 o
b 504 "
g a .
o 600 v .
E £ -
= F
400 0.2 .
2001 oo B — e 0.0 J-—7;-——---—v—»+—-»tf—-#—"+"+"’*'“+"+"+"’+'J+->+"+”-+M+
102 10° 104 10° 0 2000 4000 6000 8000 10000
Number of Requests (log scale) Level of concurrency
(a) Time performance (use case 1) (b) Concurrent scalability (use case 1)
le7
1600 $-- OPA 107 4 opA)
f- OWSM | | e OWSM -
1400 I i o
= g | ! e _os
41200 ‘ { { { ‘ ‘ El e
§ 1000 g 0.6
o o
o 2 .
g 800 504 e
g 600 g -
E Foo2 T
400 : e
2007 4o + 0.0 J'-i—;--—-——»*—4——»0-—*&»#"*"+'"+’"+"+"’+"+"+/+"7+m+
102 103 104 10° 0 2000 4000 6000 8000 10000
Number of Requests (log scale) Level of concurrency
(c) Time performance (use case 2) (d) Concurrent scalability (use case 2)
le7
--4-- OPA 10T 4 opa -
1400 } L ‘ ‘ ‘ —4-- OWSM -~ OWSM .
[Lo S0 NI TR N SRR S 8 O ' 0.8 =
e T 3
2 2
% 1000 Zo6 B
E] E
= >
£ goo g -
I} © 0.4
o Q 4
o 600 v
£ £ -
= [-
400 0.2 L
e ‘. ' 0.0 ;.*~¢++++++++*++++
102 103 104 10° 0 2000 4000 6000 8000 10000

Number of Requests (log scale)

(e) Time performance (use case 3)

Level of concurrency

(f) Concurrent scalability (use case 3)

Figure 5: Comparison between OPA and OWSM.

4.4 Results

Figures 5a, 5c and 5e show the overhead introduced by OWSM over OPA in the three stateless
use cases under consideration. Since OWSM consists of two separate parts (i.e. the wrapper and
the datastore), which communicate over an API, it can introduce some variability in response
times for individual queries. This is reflected in the significantly higher IQR shown by OWSM
in the figures (p-value < 0.05).

However, the overhead remains nearly constant (|slope| < 0.001, p-value > 0.05) across all
measured points. This is a desirable outcome, as it indicates that the overhead introduced
by OWSM does not increase as the sequence of consecutive requests progresses. A constant

9

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

overhead means that OWSM can handle multiple consecutive requests without accumulating
additional delays, ensuring consistent performance over time. This is important for maintaining
predictability and reliability in real-world use cases, where repeated requests are common.

Answer to RQ1: OWSM introduces an overhead of ~1 millisecond, which remains constant
thorough the whole sequence of requests.

Figures 5b, 5d and 5f show that the overhead for concurrent requests introduced by OWSM
follows a linear trend (R? > 0.999 , p-value < 0.05). This is due to the fact that the implemented
locking mechanism in the datastore allows only one request to be processed at a time, even when
the store is not modified. This result is consistent with the previous experiment, as for 10000
concurrent requests the elapsed time per request is ~10000 milliseconds.

Remarkably, OWSM demonstrates much more predictable response times in comparison to
OPA, with a significantly lower IQR. In fact, the mean response time for OWSM is ~10x lower
than for OPA, highlighting its improved consistency in handling concurrent requests.

Answer to RQ2: At increasing concurrency level, the response time for OWSM increases
linearly, with higher temporal stability.

The results from our experiments characterise the overhead introduced by OWSM over
OPA, which is expected due to the added functionality. We believe that the temporal stability
observed at increasing concurrency levels and the constant overhead during the handling of a
sequence of requests demonstrate that OWSM is a promising solution to address the lack of
state management primitives in OPA. However, the simple locking mechanism implemented in
our prototype could be further improved. Future improvements could include more advanced
mechanisms that would allow for some higher degree of concurrency while maintaining the
observed temporal stability.

5 Conclusions

In this paper we introduced the OPA Wrapper State Manager (OWSM), a novel solution de-
signed to extend the capabilities of the OPA authorization engine by incorporating state man-
agement for Rego policies. To validate the practical applicability of OWSM, we have successfully
applied it to various scenarios that demand stateful access control. Our solution allows to main-
tain the definition of (stateful) access policies just as Rego rules, without the need of modifying
the business logic of services.

To assess the performance impact of OWSM, we conducted empirical evaluations comparing
it to pure OPA. Our findings demonstrate that OWSM maintains temporal stability even under
increasing concurrency levels, while the introduced overhead remains relatively low, making it
a viable solution for service mesh environments.

In our future work, we plan to generalize our findings to a broader range of use cases, includ-
ing real-world scenarios derived from software repositories. Additionally, we aim to investigate
more advanced locking mechanisms to enhance efficiency and enable higher levels of concur-
rency without compromising temporal stability. Moreover, our intention is to find a solution
for verify some properties at static time for policies represented in REGO, avoid error and
vulnerabilities in policy validation. Finally, an interesting direction of future research is how to
integrate NLP in the definition and validation of stateful Rego security policies with respect to
informal descriptions given in natural language.

10

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

Acknowledgments This work was partially supported by the PNRR M4C2 11.3 “SEcurity
and Rlghts in the CyberSpace (SERICS)” PE0000014 PE7, CUP H73C22000890001, and the
project SecCo-OC CUP D33C22001300002, both funded by Next-Generation EU.

References

(1]

2]

(4]

(5]

[10]
(11]

[12]

[13]

[14]

Valentina Casola, Vincenzo Riccio, Giuseppe Tricomi, Giovanni Merlino, Pietro Di Gianantonio,
Bruno Crispo, Massimiliano Rak, and Antonio Puliafito. SecCO-OC: securing microservice-base
apps. In Proc. 10th Italian Conference on ICT for Smart Cities and Comunities, 2024.

Joseph W. Cutler, Craig Disselkoen, Aaron Eline, Shaobo He, Kyle Headley, Michael Hicks, Kesha
Hietala, Eleftherios Ioannidis, John Kastner, Anwar Mamat, et al. Cedar: A new language for
expressive, fast, safe, and analyzable authorization. Proceedings of the ACM on Programming
Languages, 8(OOPSLA1):670-697, 2024.

Craig Disselkoen, Aaron Eline, Shaobo He, Kyle Headley, Michael Hicks, Kesha Hietala, John
Kastner, Anwar Mamat, Matt McCutchen, Neha Rungta, et al. How we built Cedar: A verification-
guided approach. In Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering, pages 351-357, 2024.

Mrittika Ganguli, Sunku Ranganath, Subhiksha Ravisundar, Abhirupa Layek, Dakshina Ilango-
van, and Edwin Verplanke. Challenges and opportunities in performance benchmarking of service
mesh for the edge. In 2021 IEEE International Conference on Edge Computing (EDGE), pages
78-85, 2021.

James Larisch, Timothy Alberdingk Thijm, Suleman Ahmad, Peter Wu, Tom Arnfeld, and Mar-
wan Fayed. Topaz: Declarative and verifiable authoritative DNS at CDN-scale. In Proceedings of
the ACM SIGCOMM 2024 Conference, pages 891-903, 2024.

Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. Service mesh: Challenges,
state of the art, and future research opportunities. In 2019 IEEE International Conference on
Service-Oriented System Engineering (SOSE), pages 122-1225, 2019.

Linkerd. The world’s most advanced service mesh, 2024. Available at https://linkerd.io/.
Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah. First experiences
using xacml for access control in distributed systems. In Proceedings of the 2008 ACM workshop
on XML security, pages 25-37, 2003.

Reiya Oku, Kohei Shiomoto, and Yoshihiro Ohba. Decentralized identifier and access control based
architecture for privacy-sensitive data distribution service. In 2022 IEEE 8th World Forum on
Internet of Things (WF-IoT), pages 1-6, 2022.

OpenFGA. Relationship-based access control made fast, scalable, and easy to use, 2024. Available
at https://openfga.dev/.

OpenPolicyAgent. Rego documentation, 2024. Available at https://www.openpolicyagent.org/
docs/latest/policy-language/.

Samodha Pallewatta and Muhammad Ali Babar. Towards secure management of edge-cloud IoT
microservices using policy as code. In Furopean Conference on Software Architecture, pages 270—
287. Springer, 2024.

Ruoming Pang, Ramon Caceres, Mike Burrows, Zhifeng Chen, Pratik Dave, Nathan Germer,
Alexander Golynski, Kevin Graney, Nina Kang, Lea Kissner, Jeffrey L. Korn, Abhishek Parmar,
Christina D. Richards, and Mengzhi Wang. Zanzibar: Google’s consistent, global authorization
system. In 2019 USENIX Annual Technical Conference (ATC ’19), 2019.

Alen Paul, Rishi Manoj, and Udhayakumar S. Amazon Web Services cloud compliance automation
with Open Policy Agent. In 2024 International Conference on Ezpert Clouds and Applications
(ICOECA), pages 313-317, 2024.

11

https://linkerd.io/
https://openfga.dev/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/

OWSM: Empowering Rego for Stateful Access Control Baldo et al.

[15] Ozair Sheikh, Serjik Dikaleh, Dharmesh Mistry, Darren Pape, and Chris Felix. Modernize digi-
tal applications with microservices management using the Istio service mesh. In CASCON ’18:
Proceedings of the 28th Annual International Conference on Computer Science and Software En-
gineering, page 359-360. IBM, 2018.

[16] Swagger. Swagger Petstore - OpenAPI 3.0, 2024. Available at https://petstore3.swagger.io/.
[17] Sytra. The Rego playground, 2024. Available at https://play.openpolicyagent.org/.

[18] Luca Verderame, Luca Caviglione, Roberto Carbone, and Alessio Merlo. SecCo: Automated
services to secure containers in the DevOps paradigm. In Proc. 2028 International Conference on
Research in Adaptive and Convergent Systems, RACS 2023, pages 10:1-6. ACM, 2023.

12

https://petstore3.swagger.io/
https://play.openpolicyagent.org/

	Introduction
	Background and related works
	Service Meshes
	Security Policies in Distributed Applications

	OWSM: OPA Wrapper State Manager
	Requirement definitions
	Design and Implementation

	Experimental Evaluation
	Use cases
	Research Questions and Methodology
	Threats to validity
	Results

	Conclusions

