Received: Added at production | Revised: Added at production

Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Automated Feature Extraction for Testing Deep Learning
Systems through lllumination Search

Tahereh Zohdinasab? |

LUniversita della Svizzera italiana, Lugano,
Switzerland

2University of Udine, Udine, Italy

Correspondence
Corresponding author Tahereh Zohdinasab,
Email: t.zohdinasab@gmail.com

Vincenzo Riccio? |

Paolo Tonellal

Abstract

The opacity of Deep Neural Networks (DNNs) poses challenges in understanding the causes of
their misbehaviours. lllumination search characterizes the inputs of a DNN by means of relevant
features and explores the resulting feature map extensively. This facilitates the interpretation of
misbehaviour-inducing inputs based on the regions they occupy in the feature map. However, cur-
rent illumination-based approaches necessitate human expert involvement for the definition of the
features, limiting broad applicability.

In this paper, we address these limitations with DeepTheia, our fully automated illumination-based
test generator that automatically extracts the features, and explores the feature space using cutting-
edge diffusion models. Experimental results show that DeepTheia consistently extracts highly
discriminative features. Independent human assessors certified that DeepTheia is able to group
misbehaviour-inducing inputs in a way that is understandable to humans in over 78% of the cases.
Moreover, the inputs generated by DeepTheia were useful in significantly improving the ability of

1 | INTRODUCTION

The widespread adoption of Deep Learning (DL) systems in various
domains highlights their crucial role in modern technological advance-
ments. These systems distinguish themselves from other software by
their ability to automatically learn complex tasks from patterns in
training data [29]. With the growing dependence on sophisticated DL
models, such as Deep Neural Networks (DNNs), availability of a solid
testing framework becomes essential. Rigorous testing should not only
validate the performance of these systems, but also address concerns
related to their interpretability [39, 54, 6].

Various testing approaches have been proposed to deal with the
unique challenges posed by DL systems [37, 58, 10, 40, 19, 3, 9, 48,
53]. These techniques leverage advanced strategies, e.g., evolutionary
search or generative models, to automatically expose misbehaviours
by exercising DL systems with artificially generated data beyond the
datasets used during development. However, merely exposing DL mis-
behaviours is not sufficient to understand the input features causing
them and, thus, thoroughly evaluate the system quality. In fact, a DNN

the original DL systems to handle inputs with critical feature combinations through fine-tuning.

model is commonly perceived by developers as a black-box, and de-
spite its exceptional performance, it often struggles to offer meaningful
explanations for specific predictions or decisions [17, 44, 57].

Recent approaches based on illumination search, such as
DeepHyperion-CS [58, 59], overcome this limitation by explicitly
searching for critical, misbehaviour-inducing inputs with different fea-
tures. lllumination search is a family of search based algorithms that
“illuminates” the input space, i.e. finds the best solution in each region
of the search space, as defined by the features of interest in the target
domain. Their output consists of feature maps, N-dimensional grids
that represent the performance of generated inputs in the space of the
relevant features. Testers can greatly benefit of such an approach, since
it explores the feature space at large, with the feature map highlighting
the most critical input feature combinations, i.e., the map cells associ-
ated with a high percentage of misbehaviour-inducing inputs. Feature
maps proved to be extremely useful in several testing tasks, e.g., test
selection [34], test adequacy assessment [14, 4], failure prediction [5],
and misbehaviour explanation [57].

A crucial problem of illumination search algorithms is the definition
of the features, as these are usually problem- and domain-specific. The
authors of DeepHyperion-CS introduced a systematic methodology for
defining features within a domain of interest. This methodology involves

multiple human experts with domain knowledge, who identify features

Software Testing, Verification and Reliability 2026;:0-16

wileyonlinelibrary.com/journal/

© 2026 Copyright Holder Name 0

2 |

ZOHDINASAB et al.

(i.e., map dimensions) and metrics for quantifying such features. Addi-
tionally, the approach requires human effort also for designing models
of the input to be perturbed by mutation operators. Indeed, involving
human experts contributes to more meaningful and understandable fea-
ture dimensions. However, the careful engineering required for defining
features, metrics and input models is not trivial and may impose several
limitations on the applicability of this testing approach, as sometimes it
is not feasible at all to do it manually.

In this paper, we propose a novel approach, DeepTheia, that tack-
les the limitations of the state of the art by introducing automated
feature extraction and input perturbation operators based on modern
generative DL, which greatly reduce the costs of illumination search.
Specifically, DeepTheia leverages the knowledge about the target do-
main automatically learned by a DNN to extract the features that better
capture the main characteristics of test inputs. This information is easily
accessible from the weights of the internal layers of a general-purpose
feature extractor or the network under test.

We evaluated our proposed technique on two different popular
image classification problems with increasing complexity, i.e., classi-
fication of handwritten digits and classification of real-world images.
Our results show that, for both problems, DeepTheia produces fea-
ture maps that can identify the combinations of feature values that
trigger misbehaviours of the DL system. In particular, DeepTheia out-
performs the features manually defined by experts in problems where
DeepHyperion-CS was already applied with success. Remarkably, the
features automatically extracted by DeepTheia perform well also for
ImageNet [43], where human-defined, measurable features could not
be defined. Furthermore, we conducted a study involving independent
human assessors. Results show that the automatically extracted fea-
tures produce cohesive groups of inputs mapped to the same cell. This
means that images with similar feature values (i.e., from the same map
cell) are perceived as similar by humans, suggesting potential human
interpretability of the feature map cells. Finally, we demonstrated the
usefulness of DeepTheia in improving the quality of the system under
test. By fine-tuning the system with inputs generated by DeepTheia,
we improved its performance for feature combinations that were not
initially handled (0% accuracy). This fine-tuning led to a remarkable
improvement (up to 99.96% accuracy) with no significant regressions.

In comparison to the original paper describing DeepHyperion-CS, the

main extensions that can be found in this paper are:

® We integrated an automated approach to extract discriminative input
features with illumination search to detect diverse misbehaviour-
inducing inputs.

® We proposed a novel input perturbation method for generating new
images using diffusion models.

® We compared our new approach with the state-of-the-art approach
DeepHyperion-CS.

® We assessed the cohesiveness of the generated feature maps by

conducting a human study.

Mutation Feature Computation 11e55(X)
(Input Perturbation) & Evaluation
Cell Competition
determination Within the cell

Selection of parent
from a cell

FIGURE 1 Overview of the MAP-Elites algorithm.

® We assessed the usefulness of our approach in improving the system
under the test through fine-tuning.

® We provide a comprehensive replication package to support repro-
duction of the results obtained in this study: https://doi.org/10.
5281/zenodo.12805149

2 | ILLUMINATION SEARCH FOR TEST-
ING DL SYSTEMS

Illumination search is a family of search based algorithms that balance
exploitation, i.e., the mechanisms that reward the most promising inputs,
with exploration, which allows to explore the search space at large by
promoting input diversity. lllumination search has been already used
for testing DL systems. Specifically, DeepHyperion-CS [58, 59] adopted
MAP-Elites [31], a popular illumination search algorithm [52] that char-
acterizes the search space as a feature map, whose N axes are the
relevant dimensions of variation, i.e., the features. It aims to fill the
feature map with the best performing individuals (i.e, inputs that ex-
pose or are close to exposing misbehaviours of the DL system, in the
case of DeepHyperion-CS). Diversity among inputs is ensured by gen-
erating inputs that cover different areas of the feature space.
illustrates the main loop of this algorithm. MAP-Elites starts by filling
an empty N-dimensional feature map with an initial population to be
evolved. Its evolutionary search process continues until the termination
of the execution budget. In each iteration, MAP-Elites selects an individ-
ual occupying a cell of the current map and mutates it to generate a new
individual. To determine the cell corresponding to the new individual,
MAP-Elites computes its feature values. If the identified map cell already
contains an individual, MAP-Elites places the individual with the higher
fitness value in the map, thus performing a local competition. When the
termination condition is satisfied, the algorithm outputs the feature map
containing the highest fitness individuals. Intuitively, a suitable fitness
function for testing DL systems should quantify how close the DL sys-
tem is to exhibit a misbehaviour [B87, 13]. Therefore, DeepHyperion-CS

https://doi.org/10.5281/zenodo.12805149
https://doi.org/10.5281/zenodo.12805149

Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search

1. Initial
Population
Generation

2. Selection

T

> [

3. Input Perturbation

4. Feature Extraction
Model Under Test
External Feature Extractor

) 2

Model-Based
Diffusion-Based

=

Termination
Condition
Satisfied?

-

6. Update the Map

5. Evaluation

-

Yes

FIGURE 2 Overview of DeepTheia. The main novel contributions to illumination search for DL systems are highlighted in boldface within grey

boxes.

employs a problem-specific fitness function that quantifies how close
the DL system is to misbehaving when exercised with the evaluated
input. By minimizing this fitness function, DeepHyperion-CS identifies

inputs that are more likely to trigger misbehaviours.

(1

min fitnesss (x) = min evaluateBehaviour(x)

The DeepHyperion-CS approach relies on human experts for feature
definition and input model design, which requires domain expertise. In
contrast, our approach overcomes these limitations by automating fea-
ture definition and introducing input perturbation operators using gen-
erative DL. This results in a significant reduction of the costs associated
with the illumination search process.

presents an overview of DeepTheia’s illumination search
and highlights our proposed solutions for fully automating the test
generation process. First, DeepTheia generates an initial population by
selecting random seeds from the original dataset (step 1). At each it-
eration, it selects an individual from a map cell (step 2). DeepTheia
can perturb inputs by leveraging diffusion models, besides input mod-
els explicitly defined by test engineers (step 3). DeepTheia applies
slight perturbations to inputs with known expected labels, operating
on the assumption that the perturbed image should preserve the ex-
pected label. This assumption aligns with the common practice of most
test generators designed for assessing image classifiers [38]. Unlike
DeepHyperion-CS, DeepTheia extracts features automatically using its
feature extractor component that exploits a transfer learning approach
(step 4). Then it evaluates the inputs using a fitness function that in-
dicates the closeness to misbehaviour (step 5). Since in this work we
focus on image classifiers, a misbehaviour occurs when the label pre-
dicted by the classifier under test differs from the expected label. Thus,
we adopt as fitness function the misclassification distance, computed
as the difference between the activation value of the neuron associ-
ated with the expected label and the highest incorrect activation from
the DNN'’s softmax layer output (hence, we aim to minimize it until
it becomes negative as a misclassification occurs) [37]. Following the
MAP-Elites algorithm, the individuals are then placed in the map in the

Feature Map

B

Test Input

Model Under Test [.
.

Dimensionality 70, Z: S
] o)
Latent Vector

Feature Vector

Z

vy

External Feature Extractor

FIGURE 3 Automated feature extraction from test inputs.

corresponding position based on their feature values (step 6). Finally,
when the termination condition is satisfied, DeepTheia reports the fi-
nal feature map. In the next sections, we detail the key contribution of
the DeepTheia approach, i.e., automated feature extraction ()
and input perturbation strategies, which include a novel diffusion-based

input perturbation technique (gection 4).

3 | AUTOMATED FEATURE EXTRACTION

A crucial element of our approach is automated feature extraction, as it
directly influences the ability of the test generator to produce a diverse
test suite. Indeed, the extracted features define the feature map, which
is progressively populated with the most promising inputs during explo-
ration. The key characteristics of the features required by illumination
search are that they must be discriminative and quantifiable.
DeepTheia leverages features automatically extracted from inner lay-
ers of DNNSs, capturing patterns in the data like combinations of shapes,
colors, textures. The understandability of these features is notoriously
challenging due to the complex, non-linear transformations in DNNs in-
fluenced by both training data and architecture. Although the individual,
automatically extracted, features could be difficult to interpret in isola-
tion, we expect that inputs with similar values of feature combinations,
i.e., inputs assigned to the same cell, are recognised as coherent and

cohesive groups of inputs even by humans.

4 |

ZOHDINASAB et al.

shows an overview of our proposed approach for extracting
features to be used as dimensions of the feature map. The goal of fea-
ture extraction is to identify input characteristics that allow DeepTheia
to cluster similar inputs together, hence providing a similarity based
explanation for the causes of DL system’s misbehaviour, when a cell
contains misbehaviours. We automatically generate features using the
following process: firstly, using a feature extractor we obtain feature
vectors, i.e., vectors of numerical values that preserve the relevant infor-
mation in the original input (fubsection 3.1). Then, we project features
onto the latent space through dimensionality reduction, to obtain data
points with reduced dimensions, while retaining the maximum possible

amount of information (i.e., data variation; see pubsection 3.2).

3.1 | Feature Vector Generation

As shownin , there are two alternative ways to generate feature
vectors: (1) the model under test itself; (2) an external feature extractor.

The Model Under Test, which is a DNN, already includes feature ex-
traction layers that are necessary for its processing. These may be
convolutional, pooling and fully connected layers, which can be used
for our purposes, to extract the features associated with a given input
[4¢, 47)]. For instance, in image processing the main building blocks of
DNNs are convolutional layers that extract visual features from the in-
put. By adding pooling layers on top of convolutional layers, the model
can identify such visual features. To use the model under test for feature
extraction, we need to pre-process the data to reshape the input vec-
tor and generate a vector with the size required by the model. We then
feed the pre-processed vector to the model and extract features. To ob-
tain higher level features, the output of the last feature extraction layers
is collected. For instance, such output can come from the last fully con-
nected layer before the softmax layer of an image classifier. The result
is an abstract feature vector of size N, i.e., the size of c-th layer of the
DNN. In this way, we can extract high level features from inputs with-
out having to define and train any additional feature extraction model.
On the other hand, we are bounded by the capabilities of the model un-
der test. If this is not good at feature extraction, we will obtain poorly
performing features.

Alternatively, we can apply a transfer learning based feature extrac-
tion method using an External Feature Extractor model. Transfer learning
leverages knowledge from a general domain and applies it to a spe-
cific domain through the fine tuning of a pre-trained model. Beyond
the considerable time savings associated with transfer learning, empir-
ical evidence suggests that starting with a pre-trained model can yield
superior performance compared to training from scratch, even when
addressing a distinct problem [49].

There are several pre-trained models which are widely used for fea-
ture extraction in the literature [23, {l, 3, 32]. For instance, VGGNet is
a convolutional neural network with multiple layers (i.e., 11 to 19 lay-
ers) for image recognition proposed by the Visual Geometry Group at
the University of Oxford [44]. Its feature extraction component spans

from the input layer to the final maximum pooling layer that outputs

the feature matrix. In order to use an external feature extractor, the
input vector must be pre-processed to fit the required input size and
shape of the model. Then, the processed input is fed to the model. In the
case of VGGNet, the last pooling layer returns a feature matrix, which
is flattened to generate the final feature vector.

Using any of the above approaches, the output of this step is a multi-
dimensional feature vector that abstracts important characteristics of

the input into a numerical embedding vector.

3.2 | Dimensionality Reduction

In this step, we apply dimensionality reduction techniques to the high-
dimensional feature vector generated in the previous step. The goal is to
obtain a lower-dimensional vector in the latent space, a low-dimensional
representation, inferred from the distribution of input data and pre-
serving the similarity among inputs with similar features. In this work,
each dimension of the latent space corresponds to one of the axes of
DeepTheia’s feature map.

The rationale behind reducing their dimensionality lies in the richness
and diversity of feature vectors, which contain a plethora of information:
attempting to find common characteristics among different inputs in
such high dimensional space and generating discriminative feature maps
is impractical without dimensionality reduction. In fact, in a high dimen-
sional space, feature map cells tend to be sparse and scarcely populated,
providing little additional information to the feature map user.

Hence, we use Principal Component Analysis (PCA) [11], a statistical
method commonly used for dimensionality reduction and data visualiza-
tion. It transforms high-dimensional data into a new coordinate system,
where the axes are the principal components. These principal compo-
nents are linear combinations of the original variables, and they are
chosen to capture the space directions of maximum variance in the
data. To this aim, we “train” a PCA model on each considered input
dataset. PCA computes the N, space directions (eigen-vectors) where
the input domain is projected (with N, the number of reduced dimen-
sions, defined by the user). In this way, PCA summarizes the information
content in a high dimensional dataset, by transforming a large num-
ber of attributes into a smaller one, while retaining the majority of the
information (variance) present in the original attribute values.

Through PCA, we can generate a pre-defined number of feature
dimensions (i.e. the number of components selected by PCA) while pre-
serving the most important information of the inputs. Once PCA is
trained, we can use it to determine the latent vector corresponding to
each input feature vector.

Since the latent space is continuous, we obtain the feature map coor-
dinate along each dimension through discretization, by scaling the latent

feature value ind.l; using the scaling factors «;:

Xi = |_(X,‘ . mdl,J (2)

where ind.l;, Vi € [1 : N] indicates an individual’s latent feature values.
The map granularity, representing the number of cells in each dimension,

Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search 5

is adjustable by changing «;, which can be tailored for a given problem

to achieve the desired level of discrimination in the feature map.

4 | INPUT PERTURBATION

Illumination search algorithms use mutation as an evolutionary oper-
ator to introduce small, random changes to individuals (i.e., candidate
solutions) in the population. It mimics the concept of genetic mutation
in biological evolution. In the context of testing, mutation is used to
generate new and potentially better solutions, by making incremental
modifications to existing test inputs.

The purpose of mutation operators is to explore the solution space
by generating different (and potentially better) test inputs. DeepTheia
projects the solution space to a feature space with lower dimensionality,
i.e., the feature map, and applies mutation operators to perturb inputs
from the map cells, so as to explore the feature map at large.

Test input generators for DL typically apply small perturbations to
initial seeds, i.e., inputs with known ground truth labels, under the
assumption that such perturbations will not change the label. For in-
stance, a simple method for input perturbation applies small changes
directly to the input space, e.g., by modifying pixel values for images [18].
While these techniques proved to be extremely effective in assessing
the robustness of the DL systems against adversarial attacks, they are
limited in testing the DNN performance in the presence of unexpected
data, i.e., inputs not represented in the training set that may occur dur-
ing system operation. To overcome such limitations, two main families
of approaches gained popularity in DL testing, i.e., the manipulation of
models of the inputs [37, 40, 58] and generative DL [[10, 24, 25, 30, 50].
In the following, we describe how we applied these two input perturba-
tion approaches to our case studies, classification of handwritten digits
from the MNIST dataset and classification of photo-realistic images
from the ImageNet-1K dataset.

4.1 | Model-Based Input Perturbation

Inspired by classic model driven engineering, model-based input pertur-
bation approaches leverage a model-based representation of their input
domain to manipulate existing tests. Specifically, these approaches
transform an input into an input model instance, which abstracts the
main characteristics that define the input domain. Then, they apply a
perturbation on the model, whose space is defined by the model pa-
rameters and has typically a lower dimensionality than the input space.
Finally, the perturbed model is transformed back to the original input
space, resulting in a concrete input vector that can be used to exercise
the DL system under test.

The input model is highly tailored to the corresponding specific ap-
plication domain. This is also the main limitation of these approaches,
which require the existence of a high-quality model representation for
the given input domain. While such models are typically available in con-

texts where model-based engineering approaches are adopted, e.g. in

(a) (b) © (d)

FIGURE 4 Model-based input representation and mutation. (a) orig-
inal input; (b) original SVG model after vectorization; (c) SVG model
mutated by moving a control point; (d) mutated input.

safety-critical domains such as automotive and avionics, we cannot as-
sume their general availability. When available, these models proved to
ensure input validity [38] and have already been successfully combined
with illumination search [58, 59].

We applied a model-based input perturbation approach to the hand-
written digit classification problem. As shown in , the original
format of the MNIST database consists of 28 x 28 images with greyscale
levels that range from O to 255. We adopted Scalable Vector Graph-
ics (SVG) as model representation [37]. SVG abstracts each digit as a
sequence of points (start, end, and control), defining the correspond-
ing Bézier segments. Such an abstraction is achieved using the Potrace
algorithm, which executes binarization, despeckling and smoothing, to
create a smooth contour composed of Bézier segments around the
given image. DeepTheia’s model-based mutation operator applies small
displacements to the SVG model points to mutate the corresponding
digit shape. To convert an SVG model back to a 28 x 28 grayscale image,
we utilize rasterization operations through the functionalities provided
by two widely used open-source graphic libraries, LibRsvgll and Cairoll.

4.2 | Diffusion-Based Input Perturbation
When the DNN input is an image, we can use generative DL to perform
input perturbation. Generative DL models operate by reconstructing
the underlying probability distribution of their training data as a low-
dimensional latent space usually consisting of a normal multivariate
probability distribution of parameters. This knowledge is then used to
generate new inputs or to modify existing inputs that belong to the
considered input domain.

Differently from model-based input perturbation, generative DL
models do not need human effort in designing manually the input model,
as the probability distribution of data is automatically extracted from
the inputs used for training. For this reason, generative DL models are
particularly useful when an input model is not available and is difficult
to craft, e.g., for feature-rich input datasets such as real images. Recent
work from the literature adopt Variational AutoEncoders (VAEs) [26]
and Generative Adversarial Networks (GANs) [15]. However, these DL
models may generate invalid inputs due to the lack of continuity in the

T https://wiki.gnome.org/Proiects/LibRsve
¥ https://www.cairographics.org

https://wiki.gnome.org/Projects/LibRsvg
https://www.cairographics.org

6 |

ZOHDINASAB et al.

latent space. GANs are known for their potentially unstable training and
lack of diversity of generated inputs due to their adversarial training.
Overall, the quality of inputs generated by these techniques heavily
relies on the quality of the training set and of the adopted generative
model [38]. Hence, we prefer to adopt more recent diffusion models
for generating image variations, which result in more realistic and valid
images [8], by using domain-specific text prompts (i.e, a text prompt
including the expected class label) that guarantee the preservation of

the ground truth classification label.

421 | Diffusion Models

Diffusion models [45] are probabilistic models designed to learn a data
distribution, denoted as p(x), through a gradual denoising process ap-
plied to a variable sampled from a Gaussian distribution. In particular,
the sampling process initiates with a noisy sample x; and progressively
generates less noisy samples x¢-1, X¢-2, ... until arriving to a final sample
Xo. At each time step t, there is a corresponding noise level, and x; can
be understood as a mixture of a signal x;-; with some noise ¢, where the
signal-to-noise ratio is determined by the time step t. Instead of operat-
ing directly on the image, latent diffusion models (LDMs) [41] operate
by repeatedly reducing noise in a latent representation space generated
by a VAE. Like other categories of generative models, LDMs have the
potential to characterize conditional distributions.

The training process of diffusion models follows a forward noising
process and a reverse denoising process. During training, the forward
process gradually adds Gaussian noise to clean data samples over T
timesteps according to a predefined noise schedule 81, 32, ..., B1. The
model learns to reverse this process by training a neural network (typ-
ically a U-Net architecture) to predict the noise that was added at
each timestep. The training objective is to minimize the variational
lower bound of the negative log-likelihood, which in practice reduces to

predicting the noise € added to the data at timestep t:

L= Eyy cmnronellle = o (xe,)I%] (3)

where ¢g is the learned noise prediction network, and x; is the noisy
version of the original data x at timestep t.

Text conditioned (text-to-image) LDMs [8, 35] process a text prompt
fed into the noise predictor U-Net. Text-to-image models start from
a random noisy image, while image-to-image latent diffusion models
accept as input an image along with a textual prompt.

Fine-tuning diffusion models for specific tasks or domains involves
adapting pre-trained models to new objectives while leveraging the rich
representations learned during initial training. Several approaches exist
for fine-tuning diffusion models. Full fine-tuning involves updating all
model parameters on task-specific data, which can be computationally
expensive but provides maximum flexibility. Parameter-efficient fine-
tuning methods, such as LoRA (Low-Rank Adaptation) [21], update only

a small subset of parameters by learning low-rank decompositions of

weight updates, significantly reducing computational costs while main-
taining performance. Textual inversion [12] learns new text embeddings
for specific concepts while keeping the diffusion model frozen, en-
abling personalization with minimal data. DreamBooth [42] fine-tunes
the entire model on a few images of a specific subject, binding unique
identifiers to new concepts. For domain adaptation, progressive fine-
tuning strategies can gradually adapt models from general domains to
specific applications, helping to preserve general knowledge while learn-
ing domain-specific features. The choice of the fine-tuning strategy
depends on factors such as available computational resources, target
dataset size, and degree of domain shift from the original training data.

The model starts by encoding the input image to the latent space.
During the sampling step, the noise predictor U-Net takes the latent
noisy image and the textual prompt as inputs and predicts the noise in
the latent space, considering the image features described within the
prompt. Then, it generates a new latent vector by subtracting the noise
from the input latent vector. After repeating this sampling step a pre-
defined number of times, the VAE decodes the obtained latent vector
to generate the new image. Generating realistic images while retaining
the style and semantic content of the input image is challenging for
image-to-image LDMs, since the latent distribution is biased in compar-
ison to a standard Gaussian distribution. For this reason, Zhang et. al.
introduced an inference pipeline called Real-world Image Variation by
Alignment (RIVAL) [55] for diffusion models, which is able to gener-
ate high-quality image variations by performing adaptive cross-image
attention and latent distribution alignment in the denoising steps. Us-
ing the RIVAL pipeline, it is possible to generate image variations while
maintaining semantic and style consistency with the seed image (i.e. the

reference image).

4.2.2 |
approach

DeepTheia’s diffusion-based

DeepTheia generates image variations using a modern image-to-image
diffusion model. This involves supplying the model with a reference im-
age and a domain-specific textual prompt. In this way, we address our
twofold objective: to use a reference image for mutation and to ensure
label preservation.

In particular, we adopt a pre-trained LDM called Stable Diffusion [41]
and fine-tune it by using images from the training set of the target class.
While the pre-trained model lays a robust foundation, tailoring it to a
specific dataset and task significantly enhances its efficacy, ensuring
alignment with user-defined objectives and preserving style, format and
other qualitative aspects of the given input domain through fine-tuning
[12, 42]. The computational cost of fine-tuning the diffusion model
depends on factors such as model size, dataset complexity, and hyper-
parameter configurations, typically requiring several hours on standard
GPU hardware [30]. However, this represents a one-time setup effort
per subject system, after which the fine-tuned components can be
reused across multiple testing campaigns without requiring retraining,

making the upfront investment cost-effective over time. By using the

Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search

| 7

@

FIGURE 5 Diffusion-based input mutation. (a) original input of class
"pizza"; (b) mutated input; (c) original input of class "teddy”; (d) mutated
input.

RIVAL inference pipeline, we feed the LDM with the reference image
(i.e., the image to be mutated) and a predefined domain-specific textual
prompt. As output, the LDM generates a new input, which is a variation
of the reference image. One can control how much the output image
adheres to the textual prompt by determining the Guidance Scale pa-
rameter. Higher guidance scale means less creativity for the LDM. The
Sampling Steps parameter can also be used to determine the number of
iterations LDM performs to denoise the image. With each step, some
noise is progressively eliminated, leading to an improvement in the out-
put image quality. However, the greater the number of sampling steps,
the longer it takes to produce an image. Using textual prompts beside
the image as inputs for the diffusion model guarantees label preserva-
tion, as the prompt ensures the presence of the subject class in the
generated image.

shows two example images generated by our diffusion-
based mutator. Figure 5 (a) is a sample “pizza” image and (b) is the
mutant image generated by LDM starting from the previous sample
image and the text prompt: “A photo of pizza, best quality, extremely de-
tailed”. (c) is a sample image labeled as “teddy”, while (d) is
the mutated image generated by LDM when feeding it with the sample
image and the prompt: “A photo of teddy, best quality, extremely detailed”.

5 | EXPERIMENTAL EVALUATION

5.1 | Research Questions

The goal of our evaluation is to understand whether the features
automatically extracted by DeepTheia are effective for testing DL sys-
tems through illumination search. Therefore, we seek answers for the
following research questions:
RQ1 (Feature Discrimination): How are the features automatically ex-
tracted by DeepTheia able to discriminate failure-inducing inputs?
Effective features should be able to define feature maps that identify
the combinations of feature values that are likely to trigger a misbe-
haviour of the DL system under test. This insight could offer developers
a deeper understanding of the root causes of misbehaviours. In fact,
the presence of regions in the feature map (i.e., one or more adjacent
cells) characterized by significantly high probabilities of misbehaviours

can suggest that the input data clustered into these cells are prone to

causing misbehaviours. Moreover, generation or acquisition of new data
that fall into these cells can be useful to obtain more evidence about
the observed failures and to possibly fix them (e.g., by re-training).

Metrics: We aim to assess whether the generated feature map M,
defined by the automatically extracted features, is discriminative. More-
over, we verify that the combination of DeepTheia’s features with
illumination search is effective by allowing a thorough exploration of
the feature map. For the latter aspect, we measure the map coverage
as number of Filled Cells (FC) in the map; for the former the Average Cell
Impurity (ACI) of the map with respect to the behaviour of the inputs in
each filled cell:

FC

Z:i:1 1- (pr%u'sb; + p?orrect,)
FC

where ppisp, and peorrect; are the probabilities of misbehaviour and correct

ACI(M) = (4)

behaviour of the model in the iy, filled cell of the map M, respectively.
Based on , the ACI value is between 0 and 0.5. A low value
of ACI means that DeepTheia can effectively discriminate the system’s
behaviour, by grouping in the same cells inputs with the same behaviour.
RQ2 (Cohesiveness): How cohesive are the features automatically ex-
tracted by DeepTheia?

Although features are automatically extracted (hence, not necessarily
human interpretable), it would be useful if they were also able to group
inputs in a way that is cohesive and understandable to humans.

Metrics: The comprehensive evaluation of the cohesiveness of our
approach requires humans in the loop. Therefore, we performed a hu-
man study involving independent assessors to determine whether the
group of images from a feature map cell are more cohesive (i.e., contain
more similar images) than a group of randomly selected images. We re-
port the cohesiveness rate for the groups of images from the same cell
vs randomly selected images from different cells of the feature map.
RQ3 (Usefulness): Can the test inputs generated by DeepTheia be used
to improve the DL system under test? Automatically generating pure and
cohesive feature maps can be extremely useful for characterizing the
behavior of the system under test, especially for datasets consisting of
complex images. Improving the quality of the system by retraining it
with inputs that have failure-inducing features would further confirm
the usefulness of the proposed approach.

Metrics: We evaluate DeepTheia’s usefulness by assessing the
model's performance after fine-tuning it on DeepTheia’s inputs. We
measure the accuracy of the model, i.e., the ratio between the number
of correct predictions to the total number of predictions, before and

after fine-tuning.

5.2 | Subject Systems and Datasets

We evaluate our approach using two popular image datasets, i.e., MNIST
and ImageNet. These datasets are commonly employed in the literature
to assess testing techniques for DL systems [28, 24, 40, 9, 3, 51] and
enable two distinct image classification tasks. In particular, ImageNet,

with its 1k classes and large-size real images poses a challenging task

8 |

ZOHDINASAB et al.

TABLE 1 Hyperparameters used in the experiments

Parameter MNIST ImageNet
class/classes 5 Pizza, Teddy
initial pop size 800 100
time budget (s) 3600 10800
input perturbation type model-based diffusion-based
guidance scale - 5
sampling steps - 50
image size 28 x 28 224 x 224
model ConvNet ResNet50
framework Tensorflow PyTorch
of epochs for fine-tuning 6 15
learning rate for fine-tuning 0.001 0.0001

to test generators. Due to the complexity of ImageNet images, it is ex-
tremely difficult to manually define discriminative and understandable
features. For each of these two subjects, we consider widely adopted,
pre-trained DL models.

MNIST [27] consists of 70000 greyscale images of handwritten dig-
its. Their size is 28 x 28 and their pixel levels range from O to 255. The
DL model predicts which digit is represented in an input image. As DL
classifier, we considered the convolutional DNN (ConvNet) architecture
provided by Keras [7] and trained it on the the MNIST training set. In par-
ticular, we used its default configuration, i.e. 12 epochs, batches of size
128, and a learning rate equal to 1 x 1073, to train a strong model which
achieved 99.11% test accuracy. Moreover, we trained a weaker model
to show how DeepTheia performs as model quality varies. To obtain a
weaker model we injected the “sub-optimal learning rate” fault from the
taxonomy of real faults for DL [22]. Specifically, we maintained the same
configuration but used a lower learning rate of 1 x 1076, resulting in a
test accuracy of 88.12%.

ImageNet is a large and extremely popular image dataset, which has
been used for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [43]. This dataset includes images of 1000 classes, partitioned
into three sets: training (1.3M images), validation (50K images), and test-
ing (100K images with held-out class labels). For this dataset, we used
the pre-trained ResNet50 neural network [20] provided by the timm
library8 in Pytorch® with 81.17% accuracy.

5.3 | Experimental Procedure

To answer our research questions, we ran DeepTheia against the consid-
ered subjects. As a baseline, we considered the state of the art approach
DeepHyperion-CS. Since it can perform only model-based input pertur-
bations and an input model is available only for the MNIST subject, we
can compare our new tool with DeepHyperion-CS only on MNIST. We
consider the results achieved by DeepTheia on the two considered sub-
jects with two different feature extraction approaches, i.e., by using (1)
the same model under test or (2) an external feature extractor. For each
feature extractor, we trained its PCA component by using the inputs

§ https:/timm.fast.ai
9 https:/pytorch.org

with the label of interest from the original training set and setting the
number of components to be selected (which corresponds to the num-
ber of feature dimensions) to 2. Having bi-dimensional maps allows us
to directly and fairly compare with DeepHyperion-CS, which also uses
2 dimensions. We performed only one training of each PCA component
for each considered subject as the output of PCA is deterministic.

Additionally, we report the results without test generation, exclu-
sively considering inputs from the MNIST test set and the ImageNet
training set. Due to the insufficient number of inputs (50 inputs) for each
class in the ImageNet test set for generating the feature maps, we used
inputs from the training set instead.

For MNIST, we used DeepHyperion-CS with three different combi-
nations of the following manually defined features [58]: (1) Luminosity
(Lum), i.e. number of pixels whose value is above 127; (2) Orientation
(Or), i.e. vertical orientation of the digit, obtained by computing the
angular coefficient of the linear regression of the non-black pixels; (3)
Moves (Mov), i.e., sum of the Euclidean distances between pairs of con-
secutive sections of the digit. Instead, on ImageNet we do not report
any results for DeepHyperion-CS as it is not applicable to this complex
dataset, which is not equipped with a model of the input data, needed
by DeepHyperion-CS to perform input perturbation.

To ensure a fair comparison, all the feature maps were generated
with the same number of cells for each feature, i.e. 25 cells, and di-
mensions, i.e., 2. The discretization of the feature space into cells
requires careful consideration of granularity to balance meaningful be-
havioral distinctions with sufficient sample populations per cell. We
adopted a grid-based discretization approach with 25 cells per feature
dimension, following established guidelines from the DeepHyperion-CS
literature [59)] that demonstrated this configuration provides reason-
able granularity without creating overly sparse or dense cell populations.
The feature ranges are dynamically determined based on the minimum
and maximum values observed across all inputs during the experimental
runs, ensuring that the discretization adapts to the actual feature dis-
tributions of each dataset. This approach maintains consistency across
different feature extractors while allowing the cell boundaries to reflect
the natural spread of feature values. We validated the meaningfulness
of the resulting feature maps through visual inspection to ensure that
nearby cells contain similar inputs, confirming that our discretization
captures semantically relevant patterns in the feature space.

To account for non-determinism, we ran each tool 10 times on both
MNIST and ImageNet. This allowed us to analyse the statistical signif-
icance of the differences between tools. We used the Mann-Whitney
U-test and measured the effect size by means of the Vargha-Delaney’s
A5 statistic [2].

presents the values of the hyperparameters we used for each
tool. We configured DeepHyperion-CS according to the configuration
suggested in the original paper. We empirically obtained the config-
urations for DeepTheia through some preliminary runs. For MNIST,
DeepTheia randomly selects an initial population made of 800 inputs
from the official MNIST test set, all belonging to the same class (i.e. digit

Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search 9

Which group of images is more cohesive (i.e. contains more

similar images) ?
B

FIGURE 6 Sample human study question for MNIST. The group of
images on the right are from the same cell of a feature map. The group
of images on the left are selected randomly from different cells of the

same feature map.

“5"). For ImageNet, DeepTheia randomly selects 100 inputs from the Im-
ageNet official training set. We considered two semantically different
ImageNet classes in our experiments (i.e. “pizza” and “teddy”).

We used the same model-based input perturbation approach to
manipulate MNIST inputs. In this way, we can effectively rule out
all confounding factors and clearly compare the features automati-
cally extracted by DeepTheia with the ones defined by experts for
DeepHyperion-CS.

For ImageNet, we used our novel diffusion-based input perturba-
tion approach, presented in . In particular, we used the
pre-trained Stable-Diffusion v1.58 model provided by Runwayll and
fine-tuned it on an NVIDIA GeForce RTX 2080 Ti GPU machine us-
ing Dreambooth [42] for 3000 training steps. For fine-tuning, we used
all the inputs in the ImageNet training set belonging to the considered
target class (i.e., pizza or teddy) and 200 images generated by the diffu-
sion model itself with a domain-specific prompt (e.g. “A photo of pizza”)
designed to ensure label preservation. For the inference, we used the
RIVAL pipeline™ (the most recent approach for generating realistic,
high-quality images at the time of writing) with guidance scale 5 and
sampling steps 50.

For the human study, we published two surveys (one for each sub-
ject) using the Mechanical Turk platform provided by AmazonEl. Each
survey consists of 11 questions to be answered by human assessors:
10 assessment questions (ASQ) and 1 attention check question (ACQ).
Specifically, we randomly selected 10 cells from a feature map gen-
erated by DeepTheia with the best performing feature extractor and
generated plots with groups of 4 images from each cell. Then, we gener-

ated 10 groups of 4 random images from different cells (with a minimum

https:/huggingface.co/runwayml/stable-diffusion-v1-5
I https:/runwayml.com

** https://github.com/dvlab-research/RIVAL

1 https:/www.mturk.com

Which group of images is more cohesive (i.e. contains more
similar images) ?

FIGURE 7 Sample human study question for ImageNet. The group
of images on the right are from the same cell of a feature map. The group
of images on the left are selected randomly from different cells of the

same feature map.

mutual distance of 9, which was the maximum possible distance to have
at least 10 different groups of random images) from the same feature
map. In each ASQ, we showed the human assessor a group of images
from one feature map cell and a group of random images and asked
them “Which group of images are more cohesive (i.e. contains more simi-
lar images)?”. The assessors were provided with three possible choices:
they could indicate that either the first group of images (>) or the sec-
ond group of images (<) is more cohesive, or the two groups have the
same level of cohesiveness (=). To prevent potential bias, we random-
ized the order of the choices: sometimes images selected from the
same cell (resp. randomly) are presented on the left; sometimes on the
right. Assessors were also provided some examples of cohesive vs ran-
dom groups of images, to explain them how to carry out the task. To

avoid bias, such examples come from an independent dataset (Fashion-

MNIST). Figure 4 and Figure 7 show two sample questions from the

human study for MNIST and ImageNet, respectively. For ACQ instead,
we showed the human assessors the same groups of images, hence two
groups that are equal in cohesiveness level (=). To ensure the quality of
the answers we restricted the participation to the workers with approval
rate above 95% and we only accepted answers from the users who
passed the ACQ. We collected 80 answers from the human assessors,
40 for each case study.

To answer RQ3, we fine-tuned the original DL models by train-
ing them for more epochs at lower learning rate, by including the
misbehaviour-inducing inputs generated by DeepTheia in the training
set. As regards MNIST, for each run, we equally divided the inputs into
two sets, i.e. trainingpr and testpr. We used the combination of original
training set and trainingpr to fine-tune the DL system. The combined
training set reduces the risk of forgetting the learned task by ensuring
that both the original training data and newly generated inputs are avail-

able during training. We used the original test set and testpt to evaluate

10 |

ZOHDINASAB et al.

the accuracy of the fine-tuned model. In this way, we assessed the accu-
racy improvement of the fine-tuned DL system on testpr and verified if
it exhibited a decline (i.e., a regression) in handling inputs from the orig-
inal set that were predicted correctly before fine-tuning. We repeated
fine-tuning 10 times for each run of DeepTheia to enable statistical anal-
ysis. Also for ImageNet, for each run, we equally divided the inputs into
two sets, i.e. trainingpr and testpr. Due to the higher complexity and
larger number of classes (i.e., 1000) in ImageNet, we needed a diversi-
fied training set representing all classes to avoid regressions. Therefore,
we generated a balanced training set by combining trainingpr with an
equal number of inputs from other classes of the ImageNet test setfl,
For instance, if we have 10 generated inputs of class pizza in trainingpr,
we add 10 images from each of the other 999 classes of the ImageNet
test set to our training set. We used the rest of the ImageNet test set as
the original test set in each run. To provide a comprehensive comparison,
we also evaluated a simple diffusion-based data augmentation baseline.
We used the pre-trained Stable-Diffusion V1.5 (from Runway, without
fine-tuning) and prompted it with simple class-based prompts such as
“A photo of pizza” to generate 10 synthetic images. We then applied
the same retraining methodology used for DeepTheia-generated inputs:
combining these baseline synthetic images with the original training
data and fine-tuning the ResNet model using identical hyperparame-
ters and training procedures. This baseline allows us to assess whether
DeepTheia’s feature-map-guided generation provides advantages over
straightforward class-conditional image synthesis in terms of model im-
provement effectiveness and efficiency. To enable statistical analysis,
we repeated the fine-tuning process 5 times for each run of DeepTheia
for class “pizza”. To assess statistical significance, we again employed
the Mann-Whitney U-test and the Vargha-Delaney’s A; 5 statistic.

6 | RESULTS

6.1 | RQ1: Feature Discrimination

In this RQ, we investigate the discriminative capability of the features
automatically extracted by DeepTheia. and report the
results achieved by the considered tools for MNIST and ImageNet, re-
spectively. Metric values are computed on the feature maps filled by
either the original test/training sets or the inputs generated by the test
generation approaches. This allows us to analyze the compared feature
extractors both with and without integration with the test generators.
Columns 2 and 3 of report the results obtained on the origi-
nal MNIST test set, while columns 4 and 5 report the results by multiple
runs of DeepHyperion-CS and DeepTheia. The results with and with-
out test generation are in agreement. In particular, the external feature
extractor VGG16 and the weak DNN generate maps that are always
more significantly covered than those obtained by the human-defined

1 Given the large size of the ImageNet training set, it was not feasible to use the
entire original training set for fine-tuning.

TABLE 2 RQ1 - Number of Filled Cells (FC) and Average Cell Impu-
rity (ACI) of DeepTheia and DeepHyperion-CS for MNIST using different
Feature Extractors (FE); best results in boldface.

Test set DeepHyperion-CS
Features FC ACI FC ACI
Mov-Lum 93 0.006 269.24+7.1 0.070 £+ 0.007
Or-Lum 217 0.007 288.6 +7.6 0.031 + 0.005
Or-Mov 88 0.005 279.2+10.7 0.083 4 0.008

Test set DeepTheia
FE FC ACI FC ACI
Strong DNN 225 0.004 262.5+8.2 0.028 + 0.004
Weak DNN 278 0.196 357.14+51 0.169 +0.010
VGG16 272 0.008 346.3 £9.3 0.052 + 0.007

features with large effect size. Moreover, the strong DNN model al-
ways achieves a significantly lower impurity with large effect size and
p-value < 0.05 (ACl is 0.004 on the test set and 0.028 on the inputs
generated by DeepTheia). This means DeepTheia is better at grouping
inputs with the same behaviours when a strong model is used as feature
extractor. Considering generated tests (columns 4 and 5), the VGG16
feature extractor achieves a significantly better ACI than the Mov - Lum
and Or - Move feature combinations with large effect size, and has
a comparable ACI with the Or - Lum feature combination (p-value >
0.05), while covering the map more extensively than all of them (FC =
346.3). The higher FC coverage observed with the weak DNN can be
attributed to its limited representational capacity and poor feature ex-
traction capabilities. Unlike the strong DNN and VGG16 models, which
learn discriminative features that group semantically similar inputs into
the same cells, the weak model produces less meaningful feature rep-
resentations. This results in inputs that should logically belong to the
same behavioural group being scattered across different cells in the fea-
ture map, artificially increasing the number of filled cells. However, this
higher FC coverage comes at the cost of significantly higher impurity
(ACI = 0.196 vs 0.004 for the strong model), indicating that the weak
model fails to create coherent groupings of inputs with similar behaviors.
This demonstrates that FC coverage alone is insufficient to assess fea-
ture map quality; the impurity metric is crucial for evaluating whether
the increased coverage represents meaningful behavioural distinctions
or merely noise in the feature space.

We further analysed the results obtained by DeepHyperion-CS and
DeepTheia by comparing their Average Misbehaviour Probability (AMP)
maps (see). These are feature maps that indicate, for each cell,
the average misbehavior probability observed across various test suites.
AMP is calculated by dividing the number of inputs causing a misbe-
haviour by the total number of inputs in each cell. The shading of cells
corresponds to their AMP values, with darker cells representing higher
AMP values and cells with bold border having misbehaviour probabil-
ity greater than 0.8 with lower bound of the confidence interval greater
than 0.65. Therefore, specific regions with bold-bordered dark cells
highlight areas of the feature space that are more likely to trigger fail-
ures in the system under test. Blank cells indicate feature combination

values not represented in the existing test inputs. DeepTheia, similar to

Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search

11

204.0-, 204.0-

187.1- 187.1-
170.2- 170.2-

153.2- 153.2-

136.. 3]

119.4-

136.3-
119.4-

1025: 3 102.5:

Lum

856 85.6-

68.7 68.7-

51.8]
34.8-

51.8-
34.8-
17. 97 17. 97

1o, . o EEEEEEEEEEEEE
o A o A Q
RPN o Y200 0 02 87

Mov or

434

356
317
27.8
239
~ .
N 20.0

12.2 u
83
4.4

=
05 i-ﬂ
34

b‘b%%‘bbbh’he%‘bb

"=

AN PO P A A s T o
@g«z@@g) 207N BT D S A

HEE I 0.8

0.6

Oor

0.4

0.2

A N A o
2P N @ 5?4 0% 0t 60”2 Y S

Mov

RN

(a)

0.8

0.6

0.2

1.2.
YOO XA X o N D oD

D707 07 27 07 v e? 0 AT h
AT DT AN Q’\\/’\,\"o,bc,vuw%,ﬁwﬁbDehhbfa%’b%« AT DT 0 9707 00 90 O AT AT AT N oo
z1 71 z1
Strong model ‘Weak model VGG model

FIGURE 8 Average Misbehaviour Probability (AMP) maps generated by (a) DeepHyperion-CS and (b) DeepTheia for MNIST. The axes quantify
different features. The cells report the probability of exposing a misbehaviour for the corresponding feature value combinations, i.e., darker colors

correspond to higher misbehaviour probabilities.

DeepHyperion-CS, produces discriminative feature maps. As shown in
(b), maps obtained by the strong and external feature extrac-
tors have specific regions where the probability of misbehaviour is high
(bold-bordered dark cells). This result is comparable with AMP maps gen-
erated by DeepHyperion-CS (see (a)). Instead, the weak model
failed to generate discriminative feature maps as it produces multiple
regions with high misbehaviour probability scattered across the feature
space (i.e., most of the covered cells are dark and bold-bordered).

TABLE 3 RQ1 - The number of Filled Cells (FC) and Average Cell
Impurity (ACI) of DeepTheia for ImageNet using different Feature Extrac-
tors (FE), for two different classes, i.e., “Pizza” and “Teddy”; best results

As for ImageNet, shows that both automated feature ex-
tractors generated discriminative maps, with low ACI both on training
set and on tests generated by DeepTheia. In particular, the features ex-
tracted by the VGG16 model showed better ACI values with statistical
significance for both subjects, while achieving a map coverage higher
than (p-value < 0.05 for the class Pizza) or comparable to (p-value >
0.05 for the class Teddy) the features extracted by the model under test
(Table 3 columns 5 and 6).

Singletons in feature map cells artificially decrease the value of ACI,
because their impurity is by definition 0. To make sure that our results
are not influenced by some unbalance in the occurrence of singletons,
we analysed their prevalence and found it consistently around 40% with
both ResNet50 and VGG16 feature extractors.

in boldface.
Training set DeepTheia . . .
Class FE FC ACI FC ACI Summary RQ1: Automatically extracted features result in
pisza RESNet50 276 0048 [1464151 002140004 highly discriminative feature maps (ACI < 0.04), while enabling
izz

VGG16 272 0039 | 1854+6.1 0.011+0.004 DeepTheia to cover the feature space extensively (FC > 200).

ResNet50 229 0.100 | 163.9+ 7.5 0.061+0.015 . .
Teddy VGG16 251 0052 | 1592+ 61 0.047 + 0.009 External feature extractors (VGG16) achieved superior or compa-

rable performance to internal ones.

12 |

ZOHDINASAB et al.

A major implication of this study for practitioners is that not only
automated feature extraction is possible and results in discriminative
maps, but also that general purpose feature extractors, independent of
the model under test, can be used for feature map construction. This
relieves developers from the need of a strong model as feature extractor,
which might not be available in the initial development phase, when the
model might be still weak.

6.2 | RQ2: Cohesiveness

TABLE 4 RQ2 - Human assessment of Feature map vs Random
based on cohesiveness; best results in boldface.

Subject Feature map Random No difference
MNIST 78.25% 4.00% 18.50%
ImageNet 78.25% 8.75% 13.00%

reports the results of our human study on the cohesiveness
of DeepTheia’s feature maps. In the Feature map column, we report the
average percentage of the crowdworkers who identified the group of
images from the same cell as more cohesive. The Random column re-
ports the percentage of answers where the randomly selected group
of images was considered more cohesive. The last column indicates
the average percentage of crowdworkers who considered a similar
cohesiveness level between the two groups.

Overall, crowdworkers were able to perceive the higher cohesiveness
of feature map cells (more than 78%). Despite the variety of ImageNet
images, the cohesiveness of the feature map cells was clear for the large
majority of the assessors.

We collected 80 responses from human assessors across two case
studies: 40 responses for MNIST and 40 responses for ImageNet. Each
response represents a three-way choice where assessors could select
either the cohesive group (images from one cell), the random group (im-
ages from different cells), or indicate equal cohesiveness between the
groups.

For statistical analysis, we applied the Mann-Whitney U-test sep-
arately for each case study, treating the 40 individual responses per
case study as independent datapoints. We converted the three-way re-
sponses to ordinal values for statistical comparison, excluding ties from
the analysis. A significantly higher percentage (78.25%) of assessors
chose the one cell images as more cohesive than the random cell ones,
with p-value < 0.05 and large effect size, demonstrating that human as-
sessors can systematically distinguish between images grouped by our
feature extraction approach versus randomly selected images. This indi-
cates that our feature maps capture meaningful semantic relationships
that align with human perception of image similarity.

Figure 9 shows image groups used in the human study: the images
selected from one feature map cell are clearly similar among them (see
(a) and (c)), while random images from different cells are more
diverse (see (b) and (d)).

(c) (d)

F | G U R E 9 Sample groups of images used for the human study: (a) Selected from one cell of the feature
map of MNIST (b) Randomly selected from different cells of MNIST (c) Selected from one cell of the feature map
of ImageNet (d) Randomly selected from different cells of ImageNet.

Summary RQ2: The features automatically extracted by
DeepTheia are associated with a perception of high cohesiveness
in human assessors. The automatically generated feature map
cells contain cohesive groups of images.

A major implication of this study for practitioners is that the pres-
ence of a high proportion of misbehaviour-inducing inputs in a given
feature map cell is to some extent human-interpretable. In fact our
study shows that misclassified images assigned to the same cell form
a cohesive group of images that share substantial similarity. This may
possibly point to some human-understandable reason for the misbe-
haviour, which might trigger proper corrective actions (e.g., re-training

on real-world images with such features).

6.3 | RQ3: Usefulness

shows the accuracy improvement achieved by fine-tuning the
considered DL systems with inputs generated by DeepTheia. The ACC
columns show the accuracy of the original DL systems on the original
test set and DeepTheia’s test set, i.e., the test partition of the inputs
generated by DeepTheia. The ACC’ columns show the accuracy values
after fine-tuning the DL systems with the training partition of the in-
puts generated by DeepTheia. The values in the ACC’ column (column 6)
are underlined to indicate a statistically significant improvement in the

accuracy after fine-tuning (p-value < 0.05 and large effect size). Since

Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search

| 13

TABLE 5 RQS3 - Model Accuracy (ACC) on the original test set and
on the test set generated by DeepTheia, before and after fine-tuning the
DL system with the training partition of the generated inputs. Results
are reported for each considered Feature Extractor (FE). In each row,
underline indicates values statistically significant.

Subject Original Test Set DeepTheia Test Set

FE ACC ACC' ACC ACC’

Strong DNN 99.27 £ 0.05 99.59 + 0.67

MNIST VGG16 99.25 99.27 +0.06 0.00 99.96 + 0.14
ImageNet Strong DNN 79.17 76.73 + 0.03 0.00 51.16 +16.80
g VGG16 79.22 76.58 £0.02 """ 63.33 4+ 28.18

we used pre-trained state-of-the-art models for our experiments, the
initial accuracy on the original test is fairly high, i.e. 99.25% for MNIST
and 79.19% on average for ImageNet. Their accuracy on DeepTheia’s
test set is 0% by construction, as we used only failure-inducing inputs
generated by DeepTheia. As regards MNIST, retraining using inputs
generated by DeepTheia significantly improved on DeepTheia’s test set
by 99.59% when using the available Strong model for feature extrac-
tion and 99.96% when using the VGG16 model for feature extraction,
with no regressions (i.e., no new mis-behaviours) on the original test
set. As regards ImageNet, both feature extractors were able to improve
the accuracy on DeepTheia’s test set with no significant drop of the
original test set accuracy. Specifically, DeepTheia with the VGG16 ex-
tractor significantly increased the accuracy by more than 60% on the
misbehaviour-inducing inputs through fine-tuning (p-value < 0.05 and
large effect size).

To evaluate the effectiveness of our feature-map-guided approach
against a baseline, we conducted an additional experiment using stan-
dard diffusion-based data augmentation. The results reported in
show that while this baseline approach maintains model performance
on the original test set (ACC: 79.19% to ACC": 76.68% 4= 0.00), it pro-
vides minimal improvement on the generated test set (ACC: 0.58% 4+
0.16 to ACC": 0.66% 4= 0.21). This limited improvement occurs because
simple class-conditional prompts tend to generate easily classified, pro-
totypical images rather than challenging edge cases that expose model
weaknesses. In contrast, DeepTheia’s feature-map-guided generation
specifically targets regions of the input space where the model ex-
hibits poor performance, resulting in more effective model improvement

through targeted augmentation of difficult cases.

Summary RQ3: The inputs generated by DeepTheia are useful to
improve the DL system performance through fine-tuning.

6.4 | Threats to Validity
External Validity: A potential threat to external validity is the selec-
tion of the experimental subjects and datasets. To mitigate this threat,

we chose two diverse image datasets with increasing complexity that

TABLE 6 RQS3 - Model Accuracy (ACC) on the original test set and
on the test set generated by the Stable Diffusion, before and after fine-
tuning the DL system with the training partition of the inputs generated
for ImageNet.

Original Test Set Generated Test Set
ACC ACC’ ACC ACC

79.19 76.68 £0.00 0.58 +£0.16 0.66 +0.21

have been widely adopted in the literature. With MNIST, we show that
DeepTheia outperforms existing approaches in a relatively simple chal-
lenge, where manual feature definition is feasible. With ImageNet, we
demonstrate that feature exploration is effective and meaningful also
in complex tasks with 1000 labels and realistic images, thanks to recent
advances in Deep Learning, i.e., transfer learning and generative Al.
External Validity: A potential threat to external validity is the selec-
tion of the experimental subjects and datasets. To mitigate this threat,
we chose two diverse image datasets with increasing complexity that
have been widely adopted in the literature. With MNIST, we show that
DeepTheia outperforms existing approaches in a relatively simple chal-
lenge, where manual feature definition is feasible. With ImageNet, we
demonstrate that feature exploration is effective and meaningful also in
complex tasks with 1000 labels and realistic images, thanks to recent ad-
vances in DL, i.e., transfer learning and generative Al. While ImageNet
represents a substantial large-scale benchmark with over 1.2 million
training images and significant visual complexity, scalability to even
larger datasets remains a consideration. Future work could explore ap-
plication to domain-specific large-scale datasets (e.g., medical imaging,
satellite imagery) or datasets with higher resolution images to further
validate scalability and generalizability across different visual domains.
Conclusion Validity: The inherent stochasticity in DL and search-based
approaches introduces variability in the results. To mitigate this, we em-
ployed a rigorous experimental methodology, running each experiment
multiple times. We further applied standard statistical tests to evaluate
the significance of the observed differences.

Reproducibility of our results is ensured by the online availability of

source code, experimental subjects and data.

7 | RELATED WORK
Different techniques proposed in the literature for testing DL systems
focus on the features of the test inputs.

O'Shaughnessy et. al [34] generate post-hoc causal explanations for
classifiers by leveraging a learned low-dimensional representation of the
data. Their method involves constructing a generative model (e.g. a VAE)
with a disentangled representation of the data and a mapping to the data
space. They use a structural causal model to formalize the relationships
between independent latent factors, classifier inputs, and outputs. Our
approach also relies on latent features of the input that are automatically

extracted. However, our aim is different, i.e., to generate test inputs by

14 |

ZOHDINASAB et al.

covering the feature space while providing discriminative feature maps
for further analysis of the model’s behaviour.

Kang et. al [24] introduced SINVAD for testing DL systems using
the latent space of VAEs. It performs optimization to find inputs close
to the decision boundary of the DL system. In particular, it adds per-
turbations to the input latent representations to generate surprising or
misbehaviour-inducing inputs. Our approach, instead of using a VAE, re-
lies on the DNN under test or an external feature extractor to define
the feature space to explore.

Dola et. al [9] extracted feature vectors using a VAE trained on the
training data of the DNN under test. These feature vectors establish a
coverage domain for the application of Combinatorial Interaction Test-
ing on a partitioned latent space, facilitating the measurement of test
coverage. They capture feature diversity in their test adequacy metric
named Input Distribution Coverage (IDC) by computing the interaction
between abstracted features. While VAEs are effective at extracting
related features of the input, they can be less accurate when they en-
counter inputs that differ from their training set and lead to unrelated
connections between features and behaviour of the model. Unlike IDC,
we use either the DNN model under test or an external feature extractor
such as VGGNet for feature extraction.

Attaoui et.al [3] used a pre-trained VGGNet model to extract rel-
evant features of the misbehaviour-inducing inputs. Their tool, called
SAFE, uses these features to compute root cause clusters and selects
unsafe test inputs to improve the DL system through retraining. Like
SAFE, DeepTheia also uses pre-trained models for feature extraction.
However, we aim to explore the feature space using illumination search
and cover the feature map by generating diverse inputs belonging to
different areas of the feature map.

DeepAtash [54] is a focused test input generator for DL systems. It
generates misbehaviour-inducing inputs with user defined feature val-
ues by targeting specific areas of the feature map. Like DeepHyperion-
CS, DeepAtash relies on input features manually defined by domain
experts. Instead, DeepTheia can automatically extract features for any
DL system and explores the feature space at large.

Neelofar et. al [33] proposed an adequacy metric for black-box
testing of autonomous vehicles considering their instance space. An in-
stance space refers to a 2D representation of the test scenarios, defined
based on the most effective features of the test scenarios. Our work is
similar in providing 2D maps that indicate the diversity and coverage of
test inputs. Their approach requires significant domain knowledge to ex-
tract meaningful features from a test scenario. In contrast, our proposed
method requires no prior knowledge of the system under test since it

can automatically extract features.

8 | CONCLUSIONS AND FUTURE WORK

This paper introduces DeepTheia, a novel test generator for DL systems

based on illumination search. It automates the extraction of relevant

input features using pre-trained models, overcoming limitations of exist-
ing illumination-based tools by eliminating the need for human experts
to define the features. DeepTheia shows significant improvements in the
discriminative power of feature maps, while preserving their cohesive-
ness and understandability, with respect to expert-aided illumination
search. Additionally, our novel mutation operator based on diffusion
models enables the generation of valid tests for complex image classi-
fication tasks, while ensuring label preservation. The inputs generated
by DeepTheia are also useful for improving DL systems through fine-
tuning. In future work, we aim to enhance generalizability by including
a broader spectrum of DL systems in our analysis and generating con-
trolled variations of images through more customized prompts for the
diffusion-based mutation operator. We also plan to explore additional
transfer learning architectures beyond VGG16 as feature extractors, in-
cluding recent advances such as Inception-V3, ResNet, EfficientNet, and
Vision Transformers, which could provide superior feature representa-
tions for test input generation. Additionally, we aim to validate our
approach on larger and more diverse datasets, including domain-specific
applications such as medical imaging and autonomous driving scenarios,

to further demonstrate scalability across different domains.

ACKNOWLEDGMENTS

This work was partially supported by the SNSF Project Toposcope (n.
214989) and the M4C2 11.3 “SEcurity and Rights In the CyberSpace -
SERICS” (PEO0000014 -CUP H73C2200089001, D33C22001300002)
projects, funded under the National Recovery and Resilience Plan
(NRRP) funded by the European Union - NextGenerationEU.

REFERENCES

1. A. B. Ahadit and R. K. Jatoth, A novel multi-feature fusion deep
neural network using hog and vgg-face for facial expression clas-
sification, Machine Vision and Applications 33 (2022), no. 4,
55.

2. A. Arcuri and L. Briand, A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering, Soft-
ware Testing, Verification and Reliability 24 (2014), no. 3, 219-
250. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
stvr.1486.

3. M. Attaoui, H. Fahmy, F. Pastore, and L. Briand, Black-box
safety analysis and retraining of dnns based on feature extraction
and clustering, ACM Transactions on Software Engineering and
Methodology 32 (2023), no. 3, 1-40.

4. M. Biagiola, S. Klikovits, J. Peltomaki, and V. Riccio, Sbft tool
competition 2023-cyber-physical systems track, 2023 IEEE/ACM
International Workshop on Search-Based and Fuzz Testing (SBFT),
IEEE, 2023, 45-48.

5. M. Biagiola, A. Stocco, V. Riccio, and P. Tonella, Two is better
than one: digital siblings to improve autonomous driving testing,
Empirical Software Engineering 29 (2024), no. 4, 1-33.

6. H. B. Braiek and F. Khomh, On testing machine learning pro-
grams, Journal of Systems and Software 164 (2020), 110542.

7. F. Chollet, Simple mnist convnet, https://github.com/
keras-team/keras-io/blob/master/examples/vision/mnist |
convnet.py (2020).

8. P. Dhariwal and A. Nichol, Diffusion models beat gans on image
synthesis, Advances in neural information processing systems

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486
https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py
https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py
https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py

Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search

| 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

34 (2021), 8780-8794.

S. Dola, M. B. Dwyer, and M. L. Soffa, Input distribution
coverage: Measuring feature interaction adequacy in neural net-
work testing, ACM Transactions on Software Engineering and
Methodology 32 (2023), no. 3, 1-48.

I. Dunn, H. Pouget, D. Kroening, and T. Melham, Exposing pre-
viously undetectable faults in deep neural networks, Proceedings
of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2021, 56-66.

K. Fukunaga, Introduction to statistical pattern recognition, Else-
vier, 2013.

R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano,
G. Chechik, and D. Cohen-Or, An image is worth one word: Per-
sonalizing text-to-image generation using textual inversion, arXiv
preprint arXiv:2208.01618 (2022).

A. Gambi, M. Miiller, and G. Fraser, Automatically testing self-
driving cars with search-based procedural content generation,
Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2019, Beijing, China, July
15-19, 2019, ACM, 2019, 318-328, . URL https://doi.org/10.
1145/3293882.3330566.

A. Gambi, G. Jahangirova, V. Riccio, and F. Zampetti, Sbst tool
competition 2022, Proceedings of the 15th Workshop on Search-
Based Software Testing, 2022, 25-32.

I. Goodfellow et al., Generative adversarial nets, Advances in
neural information processing systems 27.

J. Gu et al., Recent advances in convolutional neural networks,
Pattern recognition 77 (2018), 354-377.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti,
and D. Pedreschi, A survey of methods for explaining black box
models, ACM computing surveys (CSUR) 51 (2018), no. 5,
1-42.

J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, DIfuzz: Differen-
tial fuzzing testing of deep learning systems, Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering, 2018, 739-743.

F. U. Haq, D. Shin, and L. Briand, Efficient online testing for dnn-
enabled systems using surrogate-assisted and many-objective op-
timization, Proceedings of the 44th international conference on
software engineering, 2022, 811-822.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for im-
age recognition, Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, 770-778.

E. J. Hu et al, Lora: Low-rank adaptation of large language
models., ICLR 1 (2022), no. 2, 3.

N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, Taxonomy of real faults in deep learning systems,
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ICSE '20, Association for Computing Ma-
chinery, New York, NY, USA, 2020, 1110-1121, . URL https:
//doi.org/10.1145/3377811.3380395.

M. Jogin, M. Madhulika, G. Divya, R. Meghana, S. Apoorva
et al., Feature extraction using convolution neural networks (cnn)
and deep learning, 2018 3rd IEEE international conference on
recent trends in electronics, information & communication tech-
nology (RTEICT), IEEE, 2018, 2319-2323.

S. Kang, R. Feldt, and S. Yoo, Sinvad: Search-based image space
navigation for dnn image classifier test input generation, Proceed-
ings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, 521-528.

S. Kim and S. Yoo, Dandi: Diffusion as normative distribution for
deep neural network input, 2025 IEEE/ACM International Work-
shop on Deep Learning for Testing and Testing for Deep Learning
(DeepTest), IEEE, 2025, 9-16.

D. P. Kingma and M. Welling, Auto-encoding variational bayes,
arXiv preprint arXiv:1312.6114 (2013).

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the
IEEE 86 (1998), no. 11, 2278-2324.

Z.Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. L0, Boosting operational
dnn testing efficiency through conditioning, Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering, 2019, 499-509.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to
Information Retrieval, Cambridge University Press, 2008.

M. Maryam, M. Biagiola, A. Stocco, and V. Riccio, Benchmarking
generative ai models for deep learning test input generation, 2025
IEEE Conference on Software Testing, Verification and Validation
(ICST), IEEE, 2025, 174-185.

J.-B. Mouret and J. Clune, llluminating search spaces by mapping
elites (2015).

D. Musleh, M. Alotaibi, F. Alhaidari, A. Rahman, and R. M.
Mohammad, Intrusion detection system using feature extraction
with machine learning algorithms in iot, Journal of Sensor and
Actuator Networks 12 (2023), no. 2, 29.

N. Neelofar and A. Aleti, Towards reliable ai: Adequacy metrics
for ensuring the quality of system-level testing of autonomous
vehicles, arXiv preprint arXiv:2311.08049 (2023).

V. Nguyen, S. Huber, and A. Gambi, Salvo: Automated gener-
ation of diversified tests for self-driving cars from existing maps,
2021 IEEE International Conference on Artificial Intelligence Test-
ing (AlTest), IEEE, 2021, 128-135.

A. Nichol et al., Glide: Towards photorealistic image generation
and editing with text-guided diffusion models, arXiv preprint
arXiv:2112.10741 (2021).

M. O’Shaughnessy, G. Canal, M. Connor, C. Rozell, and M. Dav-
enport, Generative causal explanations of black-box classifiers,
Advances in neural information processing systems 33 (2020),
5453-5467.

V. Riccio and P. Tonella, Model-based exploration of the fron-
tier of behaviours for deep learning system testing, Proceedings
of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering, 2020, 876-888.

V. Riccio and P. Tonella, When and why test generators for
deep learning produce invalid inputs: an empirical study, 2023
IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE), IEEE, 2023, 1161-1173.

V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss,
and P. Tonella, Testing machine learning based systems: a sys-
tematic mapping, Empirical Software Engineering 25 (2020),
5193-5254.

V. Riccio, N. Humbatova, G. Jahangirova, and P. Tonella, Deep-
metis: Augmenting a deep learning test set to increase its mutation
score, 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), IEEE, 2021, 355-367.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer, High-resolution image synthesis with latent diffusion models,
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, 10684-10695.

N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aber-
man, Dreambooth: Fine tuning text-to-image diffusion models for
subject-driven generation, Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2023, 22500-
22510.

O. Russakovsky et al., Imagenet large scale visual recognition
challenge, International journal of computer vision 115 (2015),
211-252.

K. Simonyan and A. Zisserman, Very deep convolutional
networks for large-scale image recognition, arXiv preprint
arXiv:1409.1556 (2014).

https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3377811.3380395

16

ZOHDINASAB et al.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Gan-
guli, Deep unsupervised learning using nonequilibrium thermo-
dynamics, International conference on machine learning, PMLR,
2015, 2256-2265.

C. Tantithamthavorn and J. Jiarpakdee, Explainable Al for Soft-
ware Engineering, Monash University, 2021, . URL http://
xaidse.github.io/, retrieved 2021-05-17.

E. Tatulli and T. Hueber, Feature extraction using multimodal
convolutional neural networks for visual speech recognition, 2017
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2017, 2971-2975.

L. Wang, X. Xie, X. Du, M. Tian, Q. Guo, Z. Yang, and C. Shen,
Distxplore: Distribution-guided testing for evaluating and enhanc-
ing deep learning systems, Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2023, 68-80.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, A survey of transfer
learning, Journal of Big data 3 (2016), no. 1, 1-40.

O. WeiBl, A. Abdellatif, X. Chen, G. Merabishvili, V. Riccio,
S. Kacianka, and A. Stocco, Targeted deep learning system bound-
ary testing, ACM Transactions on Software Engineering and
Methodology .

Z. Wu, Z. Wang, J. Chen, H. You, M. Yan, and L. Wang, Strat-
ified random sampling for neural network test input selection,
Information and Software Technology 165 (2024), 107331.

Y. Xiang, H. Huang, S. Li, M. Li, C. Luo, and X. Yang, Auto-
mated test suite generation for software product lines based on
quality-diversity optimisation, ACM Transactions on Software
Engineering and Methodology (2023).

H. You, Z. Wang, J. Chen, S. Liu, and S. Li, Regression fuzzing
for deep learning systems, 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), IEEE, 2023, 82-94.

J. M. Zhang, M. Harman, L. Ma, and Y. Liu, Machine learning
testing: Survey, landscapes and horizons, IEEE Transactions on
Software Engineering 48 (2020), no. 1, 1-36.

Y. Zhang, J. Xing, E. Lo, and J. Jia, Real-world image vari-
ation by aligning diffusion inversion chain, arXiv preprint
arXiv:2305.18729 (2023).

T. Zohdinasab, V. Riccio, and P. Tonella, Deepatash: Focused test
generation for deep learning systems, Proceedings of the ACM SIG-
SOFT International Symposium on Software Testing and Analysis,
2023.

T. Zohdinasab, V. Riccio, and P. Tonella, An empirical study on
low-and high-level explanations of deep learning misbehaviours,
2023 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), IEEE, 2023, 1-11.

T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, Deephype-
rion: exploring the feature space of deep learning-based systems
through illumination search, Proceedings of the 30th ACM SIG-
SOFT International Symposium on Software Testing and Analysis,
Virtual, Denmark, 2021, 79-90.

T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, Efficient and
effective feature space exploration for testing deep learning sys-
tems, ACM Trans. Softw. Eng. Methodol. (2022). URL https:
//doi.org/10.1145/3544792.

http://xai4se.github.io/
http://xai4se.github.io/
https://doi.org/10.1145/3544792
https://doi.org/10.1145/3544792

	Automated Feature Extraction for Testing Deep Learning Systems through Illumination Search
	Abstract
	Introduction
	Illumination Search for Testing DL Systems
	Automated Feature Extraction
	Feature Vector Generation
	Dimensionality Reduction

	Input Perturbation
	Model-Based Input Perturbation
	Diffusion-Based Input Perturbation
	Diffusion Models
	DeepTheia's diffusion-based approach

	Experimental Evaluation
	Research Questions
	Subject Systems and Datasets
	Experimental Procedure

	Results
	RQ1: Feature Discrimination
	RQ2: Cohesiveness
	RQ3: Usefulness
	Threats to Validity

	Related Work
	Conclusions and Future Work
	Acknowledgments
	REFERENCES

