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ABSTRACT

The Internet of Things (IoT) is rapidly increasing its diffusion, pos-
ing great challenges to the research community. IoT systems are
composed by smart objects (Things) that are interconnected in
order to provide new products and services. The interaction of
heterogeneous and distributed smart things guided by software
with the physical world brings new sources of safety issues. To
this reason, providing valuable and effective solutions to support
the verification and validation of such systems is needed. In this
paper we introduce a model-driven Thing-In-the-Loop verification
and validation approach that transfers the best practices adopted in
different embedded system domains towards the IoT world. Starting
from models and scenarios representing the structure and behav-
iors of the IoT system as well as models of its context our approach
generates appropriate test cases that are executed in accordance
with Model-in-the-Loop, Software-in-the-Loop and Hardware-in-
the-Loop techniques. We preliminarily evaluated the feasibility of
our approach by applying it in the context of a Smart Mobility case
study.
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1 INTRODUCTION

The Internet of Things (I0T) is a paradigm that is rapidly gaining
ground in both academic and industrial communities. The basic
idea of IoT is the pervasive presence around us of a variety of things
or objects, e.g. tags, sensors, actuators, mobile phones, just to list a
few, that are able to interact with each other and cooperate with
their neighbors to reach common goals [6].

Industry and research are more and more interested in IoT sys-
tems; the total number of Internet connected devices worldwide is
forecast to surpass 75 billion in 2025,

There are a lot of contributions from the research community
for the definition of new models and architectures for IoT systems,
new methodologies for their development [11, 15], testbeds for sup-
porting their testing on the field [3, 8, 16]. On the other hand, there
are few contributions related to approaches for the verification and
validation of IoT systems, that are crucial activities, required also for
guaranteeing their safety. This aspect needs to be taken into proper
account, since the IoT applications are more and more adopted in
safety and mission critical systems, such as telecommunications
grids, water supply chains, electrical power systems, road trans-
portation systems, railway transportation systems, power plants,
air transportation networks, public safety services, and health-care
systems.

Specific techniques need to be applied across the entire devel-
opment lifecycle of a IoT system in order to guarantee that it oper-
ates correctly in response to its inputs, including the safe manage-
ment of likely operator errors, hardware failures and environmental
changes.

Industrial international standards, such as the IEC 61508 [1],
specify the techniques and the best practices that should be used for
each phase of the development lifecycle of safety-critical systems.
These standards leverage on a well defined V development process
and define strict testing requirements because high-quality testing
systems can improve products’ quality, reliability, and performance.
Just to give an example, in order to guarantee the safety of the
system, the IEC 61508 standard requires to execute Unit Testing of

Uhttps://www.statista.com/statistics/471264/iot-number-of-connected-devices-
worldwide/
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the system to ensure that the software is fully tested at the function
level and that all possible branches and paths are taken through the
software or, more thoroughly, that a MCDC code coverage criterion
is achieved rather than a simple branch coverage.

Nowadays, traditional development processes are combined with
Model-driven engineering (MDE) approaches, adopted to tackle
the essential complexities, including safety concerns, of complex
software development process [12]. Model-driven development and
virtual verification are highly desirable in the development of safety-
critical embedded systems because they allow to test the system in
a virtual environment aiding the detection of both functional and
non-functional issues in the early development stages, at different
abstraction levels, before the software is actually integrated into the
final hardware. More precisely, the x-In-the-Loop (xIL) simulation
approach relies on the virtualization of the physical plants to test
the embedded system at the model, software and hardware level
respectively and, thus, achieves faster development cycles. This
approach becomes more and more significant because the cost and
complexity of the verification and validation process grow with the
code size of the controller[20].

In this work we addressed the problem of transposing the xIL
approach towards the IoT domain and proposed a novel Thing-In-
the-Loop (TIL) verification and validation approach. The approach
focuses on the software deployed on the Things composing an IoT
system. To this aim, we had to tackle two main challenges:

o the heterogeneity of the platforms, languages and communi-
cation protocols that could be adopted for the development
of the software running on each Thing composing an IoT
system;

o the influence of the context on the behavior of the Thing
under test.

To solve these challenges, TIL relies on: (1) an abstract represen-
tation of the test cases and of the context of the entire IoT system;
(2) the generation of concrete test cases for the specific languages,
hardware platforms and communication protocols of the Thing to
be tested, and their execution; (3) the simulation of the context in
which the IoT system is immersed during the test execution.

The remainder of the paper is organized as follows. Section 2
reports related work, whereas Section 3 describes the proposed
Thing-in-the-Loop approach. Section 5 reports a case study where
we preliminarily analyzed the feasibility of our approach with re-
spect to a Smart Mobility IoT application. Finally, conclusions and
future work are discussed in Section 6.

2 RELATED WORK

In the last years, the research community has focused on the dif-
ferent aspects related to the testing of IoT systems. Sand reports
in [17] the main challenges that emerge in testing IoT systems and
proposes possible solutions. The identified challenges are related to
the great amount of details that need to be taken into account for
testing IoT systems due to the endless number of things, processes,
hardware, software. To overcome these challenges there is the need
to define a comprehensive testing strategy that oversees and con-
trols a unified testing lifecycle. Different work proposes testbeds
to support the evaluation of IoT applications in real environments
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with real-world conditions. Examples of such testbeds are IoT-Lab
[3], SmartSantander [16] and Web of Things TestBed (WoTT) [8].

Different approaches for IoT testing exploit Model-based tech-
nology. Ahmad et al. propose a Model-Based Testing As A Service
(MBTAAS) solution for the systematic testing of data an IoT plat-
forms [4]. It combines Model-Based Testing (MBT) technique and a
service-oriented solution and was experimented on FIWARE, one
of the EU most emerging IoT enabled platforms.

Abu Oun et al. [2] develop a Cross-Platform Scenario module
that solve the problem of testing different versions of the same
IoT application avoiding the need to develop/redevelop the same
scenarios for each application version. Their solution is based on the
separation of the testing scenarios from the application executing
them on the objects. The testing scenario is defined in this work
exploiting an XML representation.

An approach that can be exploited in testing IoT communication
was proposed by Tappler et al.. Their approach is based on an active
automata learning approach for testing reactive systems that can
be employed for testing IoT Communication [19]. They adopted
their solution for testing five freely available implementation of
MQTT broker identifying 18 bugs.

Esquiagola et al. present a test methodology for stress testing
IoT applications. In order to simulate different stress conditions
they exploited a load generation tool called Tsung. They exploited
the proposed methodology to evaluate the performance of their IoT
platform on different hardware platforms [10].

3 THE THING-IN-THE-LOOP APPROACH
FOR TESTING IOT SYSTEMS

The peculiarities of IoT systems need to be taken into account
for verifying and validating them. IoT systems are composed by
heterogeneous and distributed Things that may interact with hu-
mans (Thing-to-Human), among each other (Thing-to-Thing) and
with the environment surrounding them [13]. Things may be inter-
connected through a variety of different communication channels.
Smart things can autonomously process information, self-configure,
self-maintain, self-repair, make independent decisions, but also in-
teract and exchange information by themselves [18]. Things may
be developed and deployed on different platforms, that may feature
different computational characteristics, interfaces, component and
software.

Due to all these peculiarities, testing the software of IoT sys-
tems becomes an overly complicated activity and thus requires the
definition of specific methodologies and approaches.

The testing of IoT systems should be carried out at different
levels. Firstly, each Thing should be tested in isolation, then their
integration and, finally, the entire system will have to be tested
considering its Context. If we focus on a single Thing of an IoT
system, the Context may abstract all the other Things, the humans,
and the physical environment that are part of the overall IoT system.

The testing of a Thing can be compared to the testing of an
embedded system. As shown in Figure 1(a), an embedded control
system makes decisions on the basis of the feedbacks it receives
from the hardware under control, i.e. the plant. Analogously, we
can assume that a Thing interacts with its surrounding Context, as
reported in Figure 1(b).
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Figure 1: Comparison between Embedded and IoT systems

Starting from this analogy, our approach applies the xIL method-
ology for the verification and validation of the software of single
Things belonging to IoT systems. In the xIL approach, the testing ac-
tivities can be done with respect to the different artifacts produced
during the development process. More in detail, Model-in-the-Loop
(MiL) testing can be done in the early stages of development. During
this phase the dynamics of the plant is captured to test the model
of the controller. The controller and the plant are then simulated to
verify the functionality, in the modeling framework, without any
physical hardware components [21]. On the other hand, Software-
in-the-Loop (SiL) testing targets the source code being generated
from the controller models. This code is then tested with the simu-
lated plant, without any hardware, to test how well the software can
interact with the plant. Finally, Hardware-in-the-Loop (HiL) allows
to test the software of the controller deployed on the real hardware
platform while communicating with software models that simulates
the plant. In this context, the controller under test, deployed on the
real hardware platform, responds to simulated signals as if they
were generated by the actual remaining parts of the real system
[14].

Our Thing-in-the-loop approach adopts the MIL, SIL, and HIL
testing stages and extends them to the IoT domain exploiting ab-
stractions of both (1) the tests for verifying and validating the
features exposed by the Things and (2) the context in which the
Thing under test is immersed. The approach relies on transforma-
tion processes suitable to generate tests for the different languages
and platforms on which the Thing will be deployed. Moreover, like
the xIL approach, the execution of the testing process requires the
simulation of the context.

The approach should be applied in a whole model-driven devel-
opment process and it has to exploit development models of the
software of the Things composing the IoT system. The development
models should define, through a proper formalism, the structural
and behavioral characteristics of the Thing.

3.1 Approach Description

As described by the Figure 2, our Thing-in-the-Loop approach
consists of three main activities: Abstract Test Case Generation,
Concrete Test Case Realization and Test Case Execution. The Figure
shows also the artifacts that are required and produced by each
activity.

The Abstract Test Case Generation allows the automatic genera-
tion of abstract test cases for the testing of each Thing composing
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the IoT system, starting from Test Models and/or from appositely
defined Scenarios. An Abstract Test Case describes the precondi-
tions, the actions, the expected outcomes and postconditions in an
abstract way. In the Abstract Test Cases no assumption are made
about the implementation details of each Thing. The Abstract Test
Cases only test the abstract behavior of the Thing, without depend-
ing on concrete data encoding and a concrete message passing
mechanisms. Abstract Test Cases may be formalized adopting an
abstract notation. The test cases generated from the Test models
are aimed at exercising all the Thing behavior according to defined
coverage criteria.

The Concrete Test Case Realization is aimed at producing Concrete
Test Cases from the Abstract ones. Concrete Test Cases should be
specific for a given platform and for one of the three xIL levels of
testing. In order to adapt the Abstract Test Cases to the concrete
Thing under test, appropriate adapters need to be developed. More
in detail, the adapter can be decomposed into a stimulus adapter
and a response adapter. The stimulus adapter converts the abstract
events into concrete events (message or signals), specific for the
platform of the Thing Under Test. The response adapter waits for
responses of the Thing under test and convert them into results
that are evaluated according to the defined test oracles.

Transformations that are specific for the considered platforms
and languages should be defined and implemented to enable the
realization of the concrete test cases.

In the Test Case Execution activity, the Concrete test cases are
actually executed on the target platform at the chosen level of xIL
abstraction. To carry out this activity a Context Simulator compo-
nent is needed. It is connected to the Thing Under Test and interacts
with it at runtime, by producing and receiving stimuli (messages
or signals). The Context Simulator is able to simulate Context Mod-
els that abstract the environment, the users, and the other Things
composing the IoT system itself.

At the end of the testing execution activity, several reports about
coverage and testing results are produced. More in detail, regarding
the coverage, for the testing at MIL level a report about the reached
model coverage is produced, whereas for the testing at SIL and HIL
the obtained code coverage is reported.

3.2 Prototype Implementation Details

We developed a prototype architecture in order to support the
application of the proposed Thing-in-the-Loop approach.

In our implementation, Development models of the Things are
expressed as UML Component and State Machine diagrams, using
the TextUML toolkit? textual notation. Test models should be de-
fined using the GraphML? notation. They can be provided as an
input or can be automatically generated from the defined develop-
ment models, as reported in [5].

The transformation of Test models into Abstract Test Cases was
realized exploiting the features offered by GraphWalker?, a tool able
to generate paths on state machine diagrams driven by different
coverage objectives.

Zhttps://abstratt.github.io/textuml/readme.html
3http://graphml.graphdrawing.org/
“http://graphwalker.github.io/
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Figure 2: The Thing-in-the-Loop Testing Approach

As regards to Scenarios, instead, we relied on an instance of the
Gherkin language °, that is a domain specific language that allows
an high level description of the system behavior. Each scenario
is described by a triple: Given-When-Then. The purpose of Given
steps is to set the precondition of the system before an external
user interacts with it; When steps describe the action that are per-
formed by the external user; Then steps, instead, allows specifying
the expected outcomes. The translation of scenarios into abstract
test cases, required the definition of a mapping of the high-level
concepts to the one reported in the development and context mod-
els.

With respect to the Concrete Test Case Realization, we defined
different transformation rules. The MIL Concrete Test Cases are
expressed in txtUML [9] format. We defined specific transformation
rules for translating abstract test cases into jUnit® Test Cases at SIL
and HIL levels . For addressing the testing of Things deployed on
different platforms and languages, other appropriate transformation
rules should be defined.

For the Test Case Execution, we employed different Test Execu-
tion environments, specific for the platforms on which the Things
were intended to be deployed. The features offered by txtUML were
exploited to execute the MIL concrete Test cases. The SIL Concrete
Test Cases were executed exploiting the jUnit Test Runner. As a tar-
get platform for our HIL concrete Test cases execution, we exploited
the Raspberry Pi 3 board’.

Context Models are expressed exploiting UML Timing, Sequence
and State Machine diagrams, representing the physical environ-
ment, the user and the other Things composing the IoT system.
We implemented a prototype Context Simulator component that is

Shttps://github.com/cucumber/cucumber/wiki/Gherkin
Shttp://junit.org/
Thttps://www.raspberrypi.org/

able to execute the defined context models sending and receiving
stimuli (signals or messages) to and from the Thing Under Test at
the different levels of xIL testing. To enable the communication
among the Context Simulator and the target platform we built an
hardware interface based on the Arduino board?.

4 IMPLEMENTATION DETAILS

We developed a prototype architecture in order to support the
application of the proposed Thing-in-the Loop approach.

Considering the state machine diagrams (described using the
TextUML toolkit °) specifying the behavior of a TUT, they are trans-
lated into Abstract Test Models, as reported in [5]. Abstract Test
Cases are expressed exploiting the Abstract Syntax Notation-
one [7]. These models are represented exploiting a GraphML!?
notation and are transformed into Abstract Test Cases exploiting
the features offered by GraphWalker!! that is able to generate paths
on the state machines driven by different coverage objectives. The
Test Case generator also offers features for translating the provided
scenarios written in the Gherkin language into Abstract Test Cases.

As regards to Scenario definition we relied on an instance of the
Gherkin language 12, that is a domain specific language that allow
expressing an high level description of the system behavior. Each
scenario is described by a triple: Given-When-Then. The purpose
of Given steps is to set the precondition of the system before an
external user interacts with it; When steps describe the action that
are performed by the external user; Then steps, instead, allows
specifying the expected outcomes.

Shttps://www.arduino.cc/
“https://abstratt.github.io/textuml/readme.html
Ohttp://graphml.graphdrawing.org/
Uhttp://graphwalker.github.io/
2https://github.com/cucumber/cucumber/wiki/Gherkin
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In the Concrete Test Cases Realization, the MIL Concrete Test
Cases are produced exploiting the txtUML [9] language. The SIL
and HIL Concrete Test Case are defined according to the chosen
deployment platform and language. As an example, for Java code,
the Concrete SIL Test cases are defined as jUnit Test Cases. The Text
Case Execution activity relies on a Context Simulator, that is able
to execute the Context Model of the Thing under Test. Moreover,
in the different stage of the xIL testing, it interacts with the model,
the software or the hardware platform of the Thing under test.

5 A CASE STUDY ON A SMART MOBILITY
10T SYSTEM

In the following we report how we applied the proposed TIL ap-
proach for the verification and validation of a Smart Mobility IoT
system.

5.1 IoT System Requirements Description

@"6 I

Bicycle Box

[
¥ 2O

Data Server —
g /\ -_— Data Message

] -

-
n Data Server
—h— Response

Figure 3: Smart Mobility IOT System

The Smart Mobility IoT System, reported in Figure 3, is a coop-
erative mobile sensing system aimed at evaluating the pollution
levels of cycling routes in an urban context. It relies on a fleet of
smart bicycles, a central data server and a set of smart poles.

Each bicycle is equipped with a Bicycle Box (BiBox) that senses
the environment through temperature, humidity and air quality
sensors. This data is tagged with the location acquired by a GPS
receiver and periodically sent to the Data Server via a public WiFi
connection. No information about the bicycle owner is sent to the
Data Server, in order to protect the end user privacy. The BiBox,
through the WiFi connection, also receives information about the
air pollution level from the Data Server. Moreover, the Bicycle
Box provides two led displays. The former shows the pollution
level received by the Data Server, the latter renders a warning
message when the received level is different from the one locally
measured. The smart poles are equipped with a Pole Box, that senses
the environment conditions through temperature, humidity and
air quality sensors. The sensory data is tagged with its unique
identifier and periodically sent to the Data Server via a public WiFi
connection. The Pole Box has a display reporting the level of air
pollution of the area, periodically received from the Data Server. The
Data server gathers the data received from all the connected BiBoxes
and Pole Boxes. This data is analyzed and fused for evaluating the
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air pollution level, that can assume three values, i.e., L1 for low, L2
for medium and L3 for high. The evaluated pollution level is sent
back to each BiBox and Pole Box.

5.2 Application of the TIL Approach

In this section we show how the TIL approach was applied for
the verification and validation of the BiBox software, developed
through a model-driven development approach by a team of 4
master students. More precisely, we provide examples on how the
TIL approach was exploited for testing the software implementing
the control logic of the two led displays.

<<component>> El
Bicycle Box

temperature

humidity sensor data

GPS position level to display

power button

warning
area level

Figure 4: Bicycle Box - UML Component Diagram

onLevelReceived()
[compareLevels() == TRUE]
\updateLevel();

onPowerButtonPressed()
\init();

O—> o Kk
onPowerButtonPressed()

\shutDown()

|NO WARNING

onLevelReceived()
[compareLevels() == FALSE]
\updateLevel();
turnWarningLedOn()

onLevelReceived()
[compareLevels() == TRUE]
\updateLevel();
turnWarningLedOff()

- onLevelReceived()

onPowerButtonPressed()
\shutDown();

[compareLevels() == FALSE]
\updateLevel();

Figure 5: Bicycle Box Led Management Behavior

Figure 4 and Figure 5 report the development models of the BiBox
component, in the form of UML Component and Stat Machine
diagram, respectively.

Moreover, other three students, starting from the requirements
of the system, defined a set of test models and scenarios to test the
considered feature. Listing 1 reports one of the defined scenarios
designed to test the Warning Led activation.

Listing 1: Bicycle Box Warning Led Activation Test Scenario

Given that the Bicycle box is powered on
And 3 Bicycle box are inside the Area 1
And 1 Pole Box are inside the Area 1
And the value of air pollution in the Area 1 is L3
When an area level Message is received from the Data Server
And the humidity value measured is @
And the temperature value measured is @
And the air quality value measured is @
Then the L3 led should be active
And the WARNING led should be active
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Starting from the test models and the scenarios a set of Abstract
Test Cases has been automatically produced.

Then, the produced Abstract Test Cases were translated into
Concrete Test Cases for each xIL level. An example of a produced
SIL jUnit Test Case is reported in Listing 2.

Listing 2: SIL jUnit Test Case Example

@Before

public void setUp() {
DataServer ds = Context.getThing("DataServerStub");
Message message = new Message();
message.setPayload("level", 3);
ds.setResponseMessage(message) ;
Signal constant = new ConstantSignal(Q);
Context.getEnvironment().setTemperature(constant);
Context.getEnvironment().setHumidity(constant);
Context.getEnvironment().setAirQuality(constant);

@Test

public void testWarninglLedShouldBeOnWhenLevelsDiffer() {
BicycleBox b = Context.getThing("BicycleBox");
Component 1lvlLed = b.getComponent("Level3lLed");
Component wLed = b.getComponent("WarninglLed");
Context.sendEvent(b, BicycleBox.EVENT_POWER_BUTTON);
Message m = b.receive();
assertFalse(b.getLevel() == m.getPayload("level"));
assertTrue(lvlLed.getValue() == 1);
assertTrue(wLed.getValue() == 1);

In order to enable the test execution, the implemented Context
Simulator was opportunely configured taking into account the
interfaces of the component under test, shown in Figure 4.

We executed the suite of concrete MIL test cases and evaluated
both their outcome and model coverage. The test cases covered
all the states and the transitions of the model and did not find
any issue. The validated models where automatically translated
into concrete Java source code for the Raspberry Pi 3 platform,
exploiting an appropriate code generator. Then, the concrete SIL
test cases were executed against the generated source code. The
code was compiled on the development platform using the Oracle
Java 7 JDK and instrumented using the JaCoCo library 13 {6 obtain
a code coverage report. All the generated SIL Concrete Test Cases
were not able to guarantee the coverage of all the code under test.
From the analysis of the source code coverage report, it emerged
that not all the conditions were covered.

In order to reach an adequate level of code coverage, other sce-
narios should be defined to exercise the uncovered code.

The validated source code was deployed on a Raspberry Pi 3
board that was connected to the Context Simulator component
through an Arduino board in order to execute the HIL concrete Test
Cases. The Thing under test showed always the expected behavior.

This simple case study showed us the feasibility of our Thing-In-
the-Loop approach for supporting the verification and validation

Bhttp://www.eclemma.org/jacoco/
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of the BiBox at different stages of the development process. The
approach allows to test the considered Things even when the re-
maining part of the system is not available, as long as a model of
the Context is defined. Moreover, it does not require to manually
define specific Test Cases for each platform on which the Thing is
going to be deployed.

6 CONCLUSION & FUTURE WORK

In this paper we presented a Thing-in-the-Loop approach for the
verification and validation of the software of Things composing IoT
Systems. The approach was defined translating the xIL approaches
for embedded systems verification and validation toward the IoT
domain. The approach exploits context models in order to safely
test also failure and harmful scenarios, that will be dangerous to be
tested on the field.

In order to show the feasibility of the approach we applied it to a
Smart Mobility case study. The application of the approach allowed
us to verify its Bicycle box component, allowing us to identify an
issue that affected both the model and the generated code.

As future work, we plan to extend the prototype implementation
of the proposed approach, extending the supported platforms and
languages. Standard notations, such as Testing and Test Control No-
tation version 3 (TTCN-3) and Functional Mock-up Interface (FMI),
will be adopted in the implementation of our approach. Specific
approaches for modeling the context of IoT system in a thorough
way will be provided. Moreover, features for handling traceability
among the involved artifacts will be introduced in order to support
safety management. We intend to extend the approach for support-
ing integration, interoperability, performance, and safety testing of
IoT systems.

We also plan to further extend the experimentation of the ap-
proach, applying it in several safety-critical industrial case scenar-
ios, considering more complex IoT systems.
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