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Abstract—We report on the organization, challenges, and
results of the ninth edition of the Java Unit Testing Competition
as well as the first edition of the Cyber-Physical Systems Testing
Tool Competition. Java Unit Testing Competition. This year, five
tools, Randoop, UtBot, Kex, Evosuite, and EvosuiteDSE, were
executed on a benchmark with (i) new classes under test, selected
from three open-source software projects, and (ii) the set of
classes from three projects considered in the eighth edition. We
relied on an improved Docker infrastructure to execute the tools
and the subsequent coverage and mutation analysis. Given the
high number of participants, we considered only two time budgets
for test case generation: thirty seconds and two minutes.
Cyber-Physical Systems Testing Tool Competition. Five tools,
Deeper, Frenetic, GABExplore, GABExploit, and Swat, competed
on testing self-driving car software by generating simulation-
based tests using our new testing infrastructure. We considered
two experimental settings to study test generators’ transitory and
asymptotic behaviors and evaluated the tools’ test generation
effectiveness and the exposed failures’ diversity.

This paper describes our methodology, the statistical analysis
of the results together with the contestant tools, and the chal-
lenges faced while running the competition experiments.

I. INTRODUCTION

This year we organized the ninth edition of the SBST tool
competition. The competition has the goal to experiment with
testing tools for a diversified set of traditional and emerging
systems and domains. Specifically, as for recent years, we
invited researchers to participate in the competition with their
unit test generation tool for Java. Tools are evaluated against
a benchmark with respect to code coverage and mutation
score. In addition to the traditional Java tool competition, we
also organized the first Cyber-Physical System (CPS) test-
ing competition on self-driving cars simulation environments.
Specifically, in collaboration with the BeamNG research team,
this competition focuses on the generation of scenarios using
BeamNG self-driving cars simulator. As follow, Section II and
Section III, report the organization, challenges, and results of
the JUnit and CPS testing tool competitions.

II. THE JUNIT TESTING COMPETITION

This year, the ninth edition of the Java Unit Testing Compe-
tition, has as participants Randoop [1], UtBot, Kex [2], Evo-
suite [3] and EvosuiteDSE [4]. Each tool, has been executed
with a time budget of thirty seconds and two minutes on 98

classes under test selected from three new open source projects
and three open source projects already used in the previous
edition [5] of the competition.

We have compared the competitors’ tools by using both line
and branch coverage metrics, as well as, mutation analysis to
evaluate the potential of the generated test suites in revealing
fault, for each time budget. Both the execution of the tools
for generating test suites, and their evaluation, i.e., computing
code coverage metrics together with performing mutation anal-
ysis, has been carried out by using a dockerized infrastructure
hosted on Github1.

The remainder of the JUnit testing competition report is
structured as follows. Section II-A describes the benchmark
being adopted once having described the selection criteria.
Section II-B briefly describes the contestants’ tools, while
Section II-C presents the methodology for running the com-
petition. The results are detailed in Section II-D, and Section
II-E concludes the report with remarks and ideas for future
improvements.

A. The benchmark subjects of the JUnit Testing Competition

The extraction of the classes under test (CUT) to use as
benchmark for unit test case generators has been conducted
considering several factors: (i) inclusion of different applica-
tion domain [3], (ii) replicability, so open source projects may
be preferable, and (iii) no trivial classes (e.g., classes without
branches) [6]. We focused on GitHub projects (i) relying on
Maven or Gradle as build framework, and (ii) including JUnit4
test suites. We used three out of four projects from the eight
edition [5], by using a recent version of them, and we added
three new ones. Specifically, we picked:

• Guava (v29.0) (https://github.com/google/guava), a set of
Java libraries widely used within Google;

• Seata (v1.3.0) (https://github.com/seata/seata), a dis-
tributed transaction solution;

• Spoon (v7.2.0) (https://github.com/INRIA/spoon), a meta
programming library to analyze and transform Java
source code [7];

1https://github.com/JUnitContest/junitcontest

https://github.com/google/guava
https://github.com/seata/seata
https://github.com/INRIA/spoon
https://github.com/JUnitContest/junitcontest


TABLE I: Characteristics of the benchmark.

Project Cand. Samp.

Guava 274 25
Seata 29 6
Spoon 179 15
FastJSON 120 20
Okio 35 7
Weka 1165 25
Total 1802 98

• FastJSON (v1.2.66) (https://github.com/alibaba/fastjson),
a JSON parser and generator for Java;

• Okio (v1.16.0) (https://github.com/square/okio) a I/O li-
brary for Android, Kotlin and Java;

• Weka (v3.8) (https://github.com/Waikato/weka-3.8), i.e., a
workbench for machine learning.

Based on the time and resources available for running out
the competition, we have only sampled a limited number of
CUTs using the approach adopted in the last edition [5].
Once having removed the classes in which the whole set of
methods have a McCabe’s cyclomatic complexity lower than
five, we randomly sampled 98 classes from the six projects
proportionally to their overall number of testable classes.
During the random process, once identified a class, we ran
Randoop with a time budget of 10 seconds to exclude classes
where Randoop cannot provide any test case.

Table I reports, for each project, the total number of
candidate CUTs together with the number of classes used as
benchmark.

B. JUnit Testing Competition Tools

Five tools are competing in this edition: Randoop [1], UtBot,
Kex [2], Evosuite [3] and EvosuiteDSE [4].

Randoop generates unit tests using a feedback-directed
random test generation, collecting information from the exe-
cution of the tests as they are generated to reduce the number
of redundant and illegal tests [1]. Differently, UtBot, a tool
implemented by Huawei (Russian Research Institute, Saint
Petersburg Research Center, Software Analysis Team), relies
on symbolic execution extracting the information about the
execution paths identified inside the method to derive the
constraints that need to be met for traversing a desired path.
By using the SMT (Satisfiability Modulo Theory) solver,
UtBot builds a model (i.e., a set of parameter values for
the method under test) satisfying the above constraints with
the aim of finding a model satisfying all possible execution
paths of the method under test. Similarly, Kex [2] works as a
symbolic execution engine and uses SMT solvers to perform
the constraints solving. By analyzing jar files, it constructs
the control flow graph for each method and tries to cover
each basic block in each method by generating sufficient input
data. Finally, by using a novel backward search algorithm,
namely Reanimator, Kex constructs valid test cases from
generated input parameters. EvosuiteDSE [4] uses a pure dy-
namic symbolic execution approach along with a generational

search exploration strategy in an attempt to maximize branch
coverage. It also uses Evosuite’s previously developed test
suite post-processing techniques (e.g., test suite minimization).
Finally, Evosuite [3] uses an evolutionary algorithm to evolve
a set of unit tests satisfying a given set of test objectives.

C. Methodology of the JUnit Testing Competition

The methodology followed to run the competition is similar
to the one adopted in the eight edition [5]. Due to time
constraints and amount of resources required to compare the
various tools, we decided to focus on two different time
budgets (i.e., 30 and 120 seconds), as well as, on a limited
set of classes in the case of more computational demanding
tools.

Public contest repository. The complete contest infrastruc-
ture is released under a GPL-3.0 license and is available on
Github [8]. The repository also contains the benchmark (i.e.,
CUTs), detailed reports and data for the ninth edition, as well
as, for previous ones.

Execution environment. The infrastructure performed a
total of 6,250 executions (2,800 in the previous edition). In
principle, without considering the resources needed for the
execution of each competitors, we planned to have 98 CUTs
x 6 tools x 2 time budgets x 10 repetitions, resulting in 11,760
executions in total to use for statistical analysis. However,
only for Randoop, Evosuite and EvosuiteDSE we were able
to run the planned number of executions. As regards the other
three competitors’ tools we realized that, (i) Kex was not able
to produce any test case for four out of six projects in our
benchmark, so we only have results for 30 CUTs belonging to
Guava and Seata; finally (ii) Utbot requires too much memory
and disk space so we executed it only on 50% of the total
number of CUTs in our benchmark. The executions were
run in parallel using Docker on four servers with similar
characteristics: Linux Flavor with 8 CPU cores, 16 GB of
RAM and 240 GB memory.

Test generation and time budget. Once accounted for each
tool constraints, we executed each tool ten time against each
CUT for each time budget in order to reduce the randomness
of the generation processes [9]. Furthermore, we considered
two different time budgets, i.e., 30 and 120 seconds.

Metrics computation. As for last year [5], the time budget
used for mutation analysis has been set to five minutes for each
class under test, while the timeout considered for each mutant
has been set to one minute. The mutants has been sampled
among the ones generated by PITest [10] using the following
procedure: for CUTs with more than 200 mutants we randomly
kept only 33% of them, while for CUTs with more than 400
mutants we sampled 50% of them for our analysis. Finally, for
coverage metrics, we focused on lines and branches coverage
by relying on JaCoCo [11].

Statistical analysis. Similarly to previous editions [5], we
used statistical tests to support the results. Specifically, we use
the Friedman test for assessing whether the scores over the
different CUTs and time budgets achieved by the competitors
tools are significantly different from each other; then we use

https://github.com/alibaba/fastjson
https://github.com/square/okio
https://github.com/Waikato/weka-3.8
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Fig. 1: Line Coverage for Randoop, Evosuite(DSE), Utbot,
Kex and Evosuite for 30 and 120 seconds.

the post-hoc Conover’s test to determine for which pair of tools
the significance actually holds, once having adjusted them with
the Holm-Bonferroni procedure.

D. Results of the JUnit Testing Competition

Table II presents, for each tool and for each time budget the
minimum, mean, median and maximum number of test cases
being generated. As expected, in almost all the cases, while
increasing the time budget given for generation purposes, the
number of test cases being produced increase. Furthermore,
for 19 CUTs in our benchmark, at least one tool was not able
to generate any test case.

TABLE II: Statistics on number of test cases generation for
each tool and each time budget.

Tool Time Min Mean Median Max
budget

Randoop 30 0 1502 754 9428
120 0 2801 1429 18115

Evosuite 30 0 70 65 229
120 0 56 49 313

EvosuiteDSE 30 0 5 2 29
120 0 16 2 356

Utbot 30 0 341 461 595
120 0 4589 6575 6729

Kex 30 0 28 14 150
120 0 30 19 150

Going deeper on the evaluation of the test cases being
generated by each tool, we observed cases for which our
infrastructure was not able to compute metrics in terms of
both coverage and mutant analysis. By removing those cases
from our analysis, Figures 1, 2 and 3 show the ratio of lines,
branches and mutants being covered by Randoop, Evosuite,
EvosuiteDSE, Utbot and Kex, for each specific time budget.
Note that the mutation coverage is the ratio between the
mutants that were killed by at least one test and the total
number of mutants. Unsurprisingly, while increasing the time
budget, also the median line, branch and mutant coverage
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Fig. 2: Branch Coverage for Randoop, Evosuite(DSE), Utbot,
Kex and Evosuite for 30 and 120 seconds.
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Fig. 3: Mutant Coverage for Randoop, Evosuite(DSE), Utbot,
Kex and Evosuite for 30 and 120 seconds.

(slightly) increase. This is more evident for Utbot and Evosuite
(see Figure 3). Specifically, for Utbot the number of mutants
being killed over the total number of mutants moves from
34.3% (30 seconds) up to 40.1% with a time budget of 120
seconds, while for Evosuite increases from 0% up to 72.7%.
Moreover, Evosuite achieves, on average, a higher coverage
and mutation score for all the projects followed by Utbot.
Specifically, for a time budget of 120 seconds, Evosuite and
Utbot achieve (i) a line coverage of 93.2% and 31% compared
to 20% of Randoop, 8% of Kex and 6.2% of EvosuiteDSE;
(ii) a branch coverage of 87.5% and 30.1% compared to 13%,
1% and 0% of Randoop, Kex and EvosuiteDSE; and (iii) a
mutation score of 72.7% and 40.1% compared to 8%, 7.1%
and 2.7% obtained while using Randoop, EvosuiteDSE and
Kex. Finally, while Evosuite is the tool that performs best,
EvosuiteDSE is the worst on the CUTs selected for this ninth
edition of the competition. It is important to highlight that
these results may be influenced by the specific project versions
and classes under tests considered this year, as well as, the
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Fig. 4: Coverage for Evosuite(DSE), Utbot and Evosuite on a
time budget of 5 minutes.

usage of 30 and 120 seconds as time budgets.
Due to resources and time limitations, we were able to

generate test cases by using a time budget of five minutes
only for three out of six tools, namely EvosuiteDSE, Utbot
and Evosuite. Figure 4 shows the comparison between them
while looking at line, branch and mutant coverage ratio. The
graph clearly shows a trend between those three tools with
EvosuiteDSE performing the worst and Evosuite performing
the best. Specifically, the median values for line, branch and
mutant coverage are doubled while comparing Evosuite with
Utbot. For instance, EvosuiteDSE has a median line coverage
ratio of 6.2% compared to 31.1% of Utbot and 92.9% of
Evosuite.

For next year we plan to investigate this further, by including
changes in the infrastructure that allow parallel executions,
thus allowing the execution of different and greater time bud-
gets (e.g., 5 and 10 minutes), for a more complete comparison
of the various tools.

Finally, we report the final score and ranking achieved by
the tools at different search budgets as well as the ranking
produced by the Friedman test. Specifically, we observed a
score of 292.05 for Evosuite, 121.04 for Randoop, 87.76
for Utbot, 47.14 for EvosuiteDSE and 44.21 for Kex. In
terms of ranking, instead, we have Evosuite (1.43), Randoop
(2.56), EvosuiteDSE (2.56), Utbot (3.53), and Kex (4.15). It is
important to mention that in doing the comparison we limited
the results to the ones available for the six competitors’ tools.

E. Conclusions and Final Remarks of the JUnit Testing Tool
Competition

This year was the ninth edition of the Java Unit Testing
Competition. Compared to previous editions, this year we
have four competitors, namely EvosuiteDSE, Kex, Utbot,
and Evosuite, and Randoop as a baseline, among which the
best performing one is Evosuite followed by Utbot, while
EvosuiteDSE seem to perform the worst on the CUTs selected
for this year.

The dockerized version of the infrastructure allowed us to
distribute the execution on four different servers. However,
most of the tool being submitted required too much RAM for
generation (around 13GB for Kex) as well as a huge amount
of disk space for storing the results. As an example, Kex and
Utbot required 140-150GB for storing generated test cases and
intermediate results while executing on the whole set of CUTs
in our benchmark. The above constraints limited us in properly
parallelizing the execution in terms of automatic generation of
test cases.

The two-steps procedure used to select the different CUTs
proved to be useful again this year. It allowed us to dis-
cover configuration issues in the competition infrastructure
(e.g., wrong class-paths) and avoid several of the difficulties
encountered last year.

As future directions we envision several possibilities: we
need to (i) properly verify the reasons why for some CUTs in
our benchmark, our infrastructure was not able to produce both
coverage and mutation analysis data; (ii) include additional
criteria than the coverage and mutation analysis (e.g., perfor-
mances [12] and readability [13]) for evaluation purposes; (iii)
experiment with tools supporting the testing of more complex
application (e.g., cloud-based systems [14]); and (iv) consider
to extend the infrastructure to support other languages (e.g.,
Python [15]).

III. THE CYBER-PHYSICAL SYSTEMS TESTING TOOL
COMPETITION

Self-driving cars are a particular family of Cyber-Physical
Systems (CPSs), quickly becoming part of our everyday
lives. Since those systems are safety-critical, they should be
thoroughly tested to avoid deadly consequences [16], [17].
Therefore, in addition to the Java unit testing tool competition,
we organized the first CPS testing tool competition this year.
This novel competition aims to shed light on the challenges
of CPS testing and promote open research.

This first edition received a remarkable number of submis-
sions, despite the short time to prepare them. Namely, this
year’s participants are Deeper [18], Frenetic [19], Swat [20],
and GAB- [21], which was submitted in two orthogonal con-
figurations, i.e., exploratory (GABExplore) and exploitative
(GABExploit).

We executed all the tools in the BeamNG.tech driving
simulator [22] against the same test subject. We studied their
transitory behavior by giving each tool a two-hour generation
budget and configuring the test subject to drive up to 70 Km/h.
Additionally, we used a five-hour generation budget to study
their asymptotic behavior and removed the speed limit.

To carry out the evaluation, we developed a brand new
testing infrastructure by exploiting the simulator’s official
library [23] and a previous research tool [24]. In particular, our
infrastructure (i) allows testers to integrate their tools easily;
(ii) visualizes and validates the generated tests; (iii) automat-
ically executes the tests using the physically accurate driving
simulator BeamNG.tech [22], and (iv) generates concise re-
ports about test generation and execution.



Fig. 5: Examples of valid (A) and invalid (B, C, D) virtual
roads. Road B self-intersects, road C contains overly sharp
turns, while road D goes outside the map boundaries.

Additionally, we developed the analysis scripts to compare
the test generation tools. The infrastructure is open-source and
available on GitHub at:

https://github.com/se2p/tool-competition-av.

In the remainder of the CPS testing competition report, we
present the benchmark (Section III-A) and the participating
tools (Section III-B). Then, we describe the adopted method-
ology (Section III-C), the experimental procedure (Section
III-D) and report the evaluation results (Section III-E). Finally,
we conclude with remarks and ideas for future improvements
(Section III-F).

A. Simulation-based Testing of Self-Driving Car Software

CPSs range from medical devices to drones to the Internet
of Things; hence, they form a broad domain of investigation.
To keep our competition focused, we considered only one
representative instance of CPSs, i.e., self-driving cars, which
are increasingly becoming relevant to both academia [25] and
industry [26].

Testing the software that controls self-driving cars is chal-
lenging because it requires creating relevant abstract testing
scenarios and reifying them into concrete executions [27].
Those executions can take place in the real world or inside
computer simulations. Naturalistic field operational tests (N-
FOT) leave autonomous vehicles free to roam in the real world;
hence, they are dangerous and expensive [28]. In contrast,
virtual tests use computer simulations to assess both the
hardware and the system’s software under test. Virtual tests
are faster, cheaper, and less dangerous than N-FOT and enable
complete control over the test execution and programmatic
test generation. Therefore, for this competition, we executed
virtual tests in a driving simulator.

Specifically, we consider driving scenarios on single, flat
roads surrounded by plain green grass. We fixed both the

environmental conditions (i.e., weather and lighting) and the
road layout (i.e., number and width of lanes) for simplicity.
Consequently, driving simulations take place on a sunny day
and on roads that consist of two fixed-width lanes demarcated
by white solid lines and divided by a solid yellow line. This
setup follows previous research on testing lane-keeping assist
systems (LKAS). It also naturally defines the driving task that
the ego-car must complete: driving without going off the lane
from a starting position, i.e., the beginning of a virtual road,
to a target location, i.e., the end of that virtual road.

The goal of the test generators is to create virtual roads
that expose problems in the test subject, such as driving off-
road, invading the opposite lane, or stopping in the middle of
the road. Our framework represents virtual roads as sequences
of points, i.e., road points, defined on a two-dimensional map
with predefined size and shape. We interpolate the sequence of
road points using cubic splines to obtain a smooth road spine,
i.e., the road’s central line, and adopt the convention that the
first and last road points define the starting and target locations
respectively. We exemplify virtual roads in Figure 5 where
white dots represent the road points, triangles and squares
represent the starting and target locations, and a yellow line
represents the interpolated road spine.

The problem of generating virtual roads is challenging be-
cause there is a large number of possible road point sequences,
but not all of them result in valid roads [29]. For example,
roads might self-intersect or self-overlap (Figure 5-B) or
contain turns that are too sharp to be driven without invading
the opposite lane (Figure 5-C). Finally, roads must be fully
contained in the maps to comply with the underlying driving
simulation. Notably, this condition does not automatically hold
even if all the road points lie inside the map because we
interpolate the road points using cubic splines (Figure 5-
D). We validate the roads generated by the tools and report
invalid ones without executing them. Therefore, invalid roads
do not count as a failed tests. As we discuss in Section III-C,
accounting for them, let us make interesting observations on
tools’ generation effectiveness.

To ensure a uniform representation of inputs, an automatic
test execution, and an easy integration of the tools, we de-
signed an extensible testing framework that dynamically loads
the test generators as plugin-ins. The framework ensures that
only valid virtual tests are executed and procedurally generates
driving simulations from them. During the test execution, it
monitors the operation of the tools and the driving simulations
to enforce the generation budget and collect the data required
by the tools to work (e.g., to measure tests’ goodness using
fitness functions).

B. The Tools of the CPS Testing Competition

Four tools competed in this first edition of the CPS testing
tool competition. We summarize below their key features.

Deeper [18] uses a multi-objective search algorithm (i.e.,
NSGAII [30]) to maximize the distance between the car and
the center of the lane while minimizing the road length. It
uses Catmull-Rom splines to represent inputs and relies on the

https://github.com/se2p/tool-competition-av


search operators implemented by DeepJanus [31] to evolve a
predefined initial population.

Frenetic [19] uses a single-objective genetic approach to
maximize the distance between the ego-car and the center of
the lane. It uses Frenet frames [32] to represent inputs and, in
addition to standard genetic operators, introduces a mechanism
to promote the diversity of the generated roads.

GA-Bézier [21] uses a genetic algorithm to evolve roads
represented using Bézier curves [32]. To address the trade-off
between exploring the test space and exploiting observations
collected during the test generation, its authors implemented
two versions of the test generator: GABExploit, to maximize
the number of failing test cases, and GABExplore, to gen-
erate roads with unique features. The authors describe these
approaches and their ongoing work in a preliminary paper [33].

Swat [20] uses Markov chains to generate random sequences
of road segments, including straight segments and turns.
Inspired by AsFault [34], it utilizes affine transformations to
generate virtual roads from those segments. Differently from
AsFault, Swat does not employ evolutionary search algorithms.
According to its authors, optimizing the test cases generated
using the Markov chain using evolutionary search algorithms
is part of future work [35].

C. The Contest methodology of the CPS Testing Competition

1) Subject System of the CPS Testing Competition: We
evaluated the competing tools using the BeamNG.tech driving
simulator [22], a freely available research-oriented version
of the commercial game BeamNG.drive and chose as test
subject its built-in driving agent, BeamNG.AI. This driving
agent is omniscient, i.e., it knows the geometry of the whole
road and utilizes a complex optimization process to plan
trajectories that drive the ego-car as close as possible to the
speed limit while keeping the vehicle inside the lane. We
decided to use BeamNG.AI as a test subject for the following
reasons: 1) it has been used in previous research to assess
test input generators [29], [34] and train vision-based steering
predictors [31], 2) it does not require manual training, which
reduces the threats to the validity of the evaluation; and, 3) we
can alter its driving style by changing parameters such as the
maximum speed at which the ego-car can drive.

The competitors had access to the same agent and simulator
we used for the final evaluation. Therefore, while preparing the
submission, they could assess the performance of their tools
under different execution conditions by configuring the test
subject.

2) Goal and Metrics: The goal of the competition is to
generate the highest number of diverse failure-inducing inputs,
i.e., valid roads that cause the ego-car to drive out of the lane
within the given time budget. In the following, we report the
considerations we made in evaluating the competing tools.
Detected Failures. Effective test generators trigger many
failures; therefore, we count for each tool how many generated
tests fail. Our infrastructure detects a failure each time the ego-
car partially drives outside the lane if the area of the ego-car
outside the lane is above a configurable threshold. For instance,

TABLE III: Experimental Setups

Name Map Size Max Speed Budget Tolerance
(m2) (Km/h) (h) (%)

DEFAULT 200× 200 – 5 0.95
SBST21 200× 200 70 2 0.85

a 0.5 threshold triggers a failure when more than half of the
ego-car lies outside the lane. We label those failures as Out
of Bound Episodes (OBEs) following the naming convention
defined by Gambi et al. [29] and refer to the threshold value
controlling them as tolerance.
Failure Diversity. Tests are useful when they trigger diverse
failures; otherwise, they would waste computational resources
in exposing the same issues multiple times. To measure failure
diversity, we adopt a two-step strategy: first, we extract the
road segments relevant to the failures; then, we compute their
sparseness.

We define the road segment relevant to a failure as the
part of the road around the OBE location. We consider the
road segment before the OBE to account for the most recent
activity of the ego-car (e.g., acceleration, steering), and the
road segment after the OBE to account for the trajectory that
the driving agent has planned (e.g., based on the camera field-
of-view). Specifically, we consider relevant segments 60m-
long (30m before the failure and 30m after it) to keep them
as short as possible, hence easy to compare, but informative.
We compute failures’ sparseness as the average maximum
distance of the road sectors relevant to a set of OBEs (SOBE),
according to the following formula:

sparseness =

∑
i∈SOBE

maxj∈SOBE
dist(i, j)

|SOBE |
(1)

where dist(i, j) is the weighted Levenshtein distance [36]
between road segments suggested by Riccio and Tonella [31].
Generation Efficiency and Effectiveness Efficient test gen-
erators generate a large number of tests within the generation
budget. In contrast, effective test generators wisely use the
generation budget; e.g., they avoid generating invalid tests.
Therefore, we count the total number of generated tests and the
number of valid and invalid tests to evaluate the performance
of the competing tools.

D. Experimental Procedure

We ran the tools on the subject system in two different
experimental setups: DEFAULT and SBST21 (see Table III).
DEFAULT is the original setup we provided to the competitors.
It uses a five-hour generation budget to study the asymptotic
behavior of the tools. In this configuration, we set the tolerance
to 0.95, making it hard to trigger test failures. We also impose
no speed limit to the ego-car, which consequently adopts
a more reckless driving style. SBST21 uses a shorter time
budget (2 hours) and a lower tolerance value (0.85), which
increases the OBE monitor’s sensitivity. Additionally, this



Fig. 6: Benchmark Results. The top plot reports the number
of detected failures, while the bottom plot reports their sparse-
ness.

configuration features a more prudent driving agent that can
travel up to 70 Km/h.

To ensure a fair comparison, we ran each tool the same
number of times and on the same dedicated machine. Specif-
ically, we ran DEFAULT 5 times and SBST21 10 time on
a desktop PC running Microsoft Windows 10 Enterprise and
featuring a quad-core Intel i7-7700K CPU @ 4.20 GHz, 16
GB of Memory @ 2400Z Mhz, and an NVidia GeForce GTX
1080 GPU.

E. Results of the CPS Testing Competition

Detected Failures Figure 6 (top) shows the distribution of
number of OBEs triggered by each tool. Frenetic and GABEx-
ploit triggered at least 10x more OBEs than the other tools for
both configurations. In particular, Frenetic has shown consis-
tent performance across the runs, i.e., small standard deviation.
In contrast, GABExploit had dramatically different behaviors
across the runs returning over 120 OBEs and over 84 OBEs in
some runs but failed to trigger any failure in others. Instead,
the other tools triggered only a negligible number of OBEs
(on avg less than 2 OBEs in the SBST21 configuration and
less than 3 OBEs in the DEFAULT configuration). Furthermore,
those tools did not expose failures in all the runs.

Failure Diversity Figure 6 (bottom) shows the distribution
of failures’ sparseness for each tool. Deeper has shown low
sparseness in both configurations, probably due to the absence
of mechanisms to promote road diversity. Swat achieved high
sparseness despite finding a small number of OBEs. Both
GABExploit and GABExplore achieved low sparseness within
the 2 hour budget of the SBST21 configuration, but only
GABExplore improved remarkably (2X) when given the larger
generation budget of the DEFAULT configuration. We expected
this improvement as GABExplore explicitly promotes road di-
versity. Frenetic achieved the highest failure diversity for both

TABLE IV: Test Generation Efficiency and Effectiveness

Tool Default SBST21

TCs Val. Inval. TCs Val. Inval.

Deeper 433.0 391.0 42.0 169.7 152.9 16.8
Frenetic 511.4 369.4 142.0 180.6 134.2 46.4
GABExploit 393.4 357.8 35.6 146.3 135.6 10.7
GABExplore 381.2 339.6 41.6 124.7 115.9 8.8
Swat 405.6 388.8 16.8 150.5 144.1 6.4

configurations. Notably, Frenetic found the highest number of
OBEs for which the ego-car invades the opposite traffic lane.
Finding this kind of OBEs has been difficult for the remaining
tools since they did not find any of them in multiple runs.

Generation Efficiency and Effectiveness. Table IV reports
the average number of test cases produced by each tool across
all runs, as well as the average count of valid and invalid
test cases. These results suggest that all the tools followed
similar trends in both configurations. Frenetic generated the
highest number of test cases within the time budget. However,
this tool produced the highest number of invalid roads, mainly
caused by overly sharp turns. Deeper also generated many test
cases. It produced the highest number of valid tests and never
generated self-intersecting roads nor roads outside the map.
Swat shows the best ratio between valid and generated test
cases. For both configurations, it produced over 95% valid test
cases. GABExplore and GABExploit generated a remarkable
92% valid test cases; however, these tools also generated the
lowest number of test cases.

F. Conclusions and Final Remarks of the CPS Testing Com-
petition

This year we organized the first testing tool competition
focusing on CPS and faced several challenges to make it
happen. First, we faced the challenge of creating a testing
infrastructure that easily integrates and compares the tools.
All the research groups which took part in the competition
successfully integrated their tools into our infrastructure and
provided us with valuable feedback on how to improve it.
Another major challenge was the absence of a well-established
approach for systematically evaluating and comparing the test
generators. In this edition, we used simple metrics already
adopted in the literature. However, we believe that the def-
inition of additional metrics to better evaluate CPS testing
tools is a crucial problem to tackle for future editions of the
competition.

All the five competing tools were able to generate inputs that
triggered failures of the subject system. In particular, Frenetic
and GABExploit have been very effective and triggered many
failures. Nonetheless, both of them presented limitations: Fre-
netic generated the highest number of invalid tests among the
competitors, while GABExploit could not always find OBEs,
and the ones it found are not very diverse.
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