
Received: 19 April 2017 Revised: 1 August 2017 Accepted: 15 September 2017

DOI: 10.1002/stvr.1654

R E S E A R C H A R T I C L E

Why does the orientation change mess up my Android
application? From GUI failures to code faults

Domenico Amalfitano1 Vincenzo Riccio1 Ana C. R. Paiva2 Anna Rita Fasolino1

1Department of Electrical Engineering and

Information Technologies, University of Naples

Federico II, Via Claudio 21 Naples, Italy
2Faculty of Engineering of the University of

Porto, Porto, Portugal

Correspondence

Anna Rita Fasolino, Department of Electrical

Engineering and Information Technologies,

University of Naples Federico II, Via Claudio

21, Naples, Italy.

Email: anna.fasolino@unina.it

Summary

This paper investigates the failures exposed in mobile apps by the mobile-specific event of chang-

ing the screen orientation. We focus on GUI failures resulting in unexpected GUI states that

should be avoided to improve the apps quality and to ensure better user experience. We propose

a classification framework that distinguishes 3 main classes of GUI failures due to orientation

changes and exploit it in 2 studies that investigate the impact of such failures in Android apps. The

studies involved both open-source and apps from Google Play that were specifically tested expos-

ing them to orientation change events. The results showed that more than 88% of these apps were

affected by GUI failures, some classes of GUI failures were more common than others, and some

GUI objects were more frequently involved. The app source code analysis allowed us to identify 6

classes of common faults causing specific GUI failures.

KEYWORDS

Android bugs, Android testing, GUI failures, GUI testing, mobile testing, orientation change

1 INTRODUCTION

Over the last decade, the number of users of mobile technology and smartphones has increased considerably. The total number of smartphone users

worldwide is forecast to surpass 2.5 billion in 2019 [1].

This causes a constant demand for new software applications running on these devices (apps). As of the month of June 2016, both Android and

iOS users had the opportunity to choose from among more than 2 million apps [2].

Mobile technology has radically changed the lifestyle of billions of people around the world. We use mobile apps for several hours every day,

entrust them our sensitive data, and perform a large variety of activities through them, including critical tasks.

The demand for app quality has grown together with their spread. Apps users require them to be reliable, robust, efficient, secure, usable, etc.

As a consequence, software developers should give proper consideration to the quality of their applications by adopting suitable quality assurance

techniques, such as testing.

In the last decade, the research community has devoted great interest to the mobile app testing field. Several testing approaches have been

proposed to assess different quality aspects of mobile applications [3], such as functionality [4], performance [5], security [6, 7], responsiveness [8],

and energy consumption [9].

Since mobile apps are event-driven systems, many proposed techniques solicit them by means of sequences of events [10]. However, because of

the peculiarities of the mobile devices, these apps should be tested with appositely crafted approaches [11]. As an example, testing processes should

devote particular attention to exercise the apps through mobile-specific events, such as sending an application to the background and resuming it,

receiving a call, changing the state of the network connections, or changing the orientation of the device.

Among these types of events, the orientation change deserves special attention. It is a peculiar event in mobile platforms that causes the switch

of the running app between portrait and landscape layout configurations. Android guidelines recommend that, when the orientation change event

occurs, the application adapts itself to the new layout, avoiding memory leaks, and preserving its state and any significant stateful transaction that

was pending.* Unfortunately, the implementation of these recommendations is not straightforward and introduces programming challenges to

*https://developer.android.com/guide/components/activities/state-changes.html

Softw Test Verif Reliab. 2018;28:e1654. wileyonlinelibrary.com/journal/stvr Copyright © 2017 John Wiley & Sons, Ltd. 1 of 27
https://doi.org/10.1002/stvr.1654

https://doi.org/10.1002/stvr.1654
http://orcid.org/0000-0001-7116-019X
https://developer.android.com/guide/components/activities/state-changes.html

2 of 27 AMALFITANO ET AL.

Android programmers. Several works in the literature have pointed out that many mobile apps actually crash or show failures that can be attributed

to orientation change mishandling [4, 12, 13, 14, 15].

The GUI failures are a relevant class of failures that may disrupt the user experience. They consist in the manifestation of an unexpected GUI state,

according to Lelli et al [16]. If an Android app does not correctly handle an orientation change event, it is likely that this event results in different

types of GUI failures. As an example, unexpected GUI objects may appear in wrong positions, objects may be rendered with wrong properties, or

important objects may be missing from the GUI. A GUI failure may involve different types of GUI objects, and there may be object types that are more

likely to be involved than others. These failures may be caused either by application logic errors, or by errors in the code that uses Android-specific

programming features. As a consequence, studying this type of GUI failures and classifying them according to their characteristics may be useful

both for defining testing techniques able to detect them and for preventing the introduction of code faults causing them.

In this paper, we propose a framework for classifying GUI failures and exploit it in 2 different exploratory studies that aimed at investigating their

diffusion, the key characteristics, and possible faults causing them. The former study addressed the context of open-source Android apps, while the

latter one considered very popular Android apps from Google Play Store. In both studies, the apps were tested and a considerable number of GUI

failures due to the orientation change was detected. These failures were validated and classified and made available in public-shared documents.

In the former study, we also analyzed the source code of a subset of applications exposing most frequent types of failure and were able to discover

6 classes of common faults causing them made by Android programmers. The results of both studies are presented in the paper.

Our paper contributes the Android community in several ways. It may help in the definition of a fault model specific to Android apps to develop

testing techniques that can allow developers to find faults in apps before release, especially in the parts of the code that use new programming

features [17]. Moreover, it can enable the definition of additional mutation operators specific to Android apps and, possibly, of static analysis tech-

niques suitable for early bug detection. Lastly, the descriptions of GUI failures provided by our studies may be exploited to evaluate and compare

the effectiveness of different testing techniques and tools.

The remainder of the paper is structured as follows. Section 2 presents some examples of real GUI failures that motivated us to explore this issue.

Section 3 illustrates the framework we defined for characterizing GUI failures due to orientation changes.

Section 4 presents the first exploratory study we performed for finding GUI failures in real Android open-source applications, classifying them,

and discovering common faults causing some of these failures. Section 5 reports a second exploratory study that aimed at finding and classifying

DOC GUI failure in top Android apps from Google Play Store. Section 6 discusses the threats that could affect the validity of the exploratory studies.

Section 7 provides related work. Section 8 finally draws the conclusions and presents future work.

2 MOTIVATING EXAMPLES

In this section, we present 4 examples of GUI failures due to screen orientation changes in mobile apps. We found these failures by manually testing

3 different real mobile applications. We solicited the apps by using the double orientation change (DOC) event that consists in a sequence of 2

(A) Before the two orientation
changes

(B) After the two orientation
changes

FIGURE 1 Example of Windows 10 GUI failure

AMALFITANO ET AL. 3 of 27

consecutive orientation change events. To detect a GUI failure, we compared the GUI before and after this event. We used the DOC event because

we observed that applying a single orientation change may not be sufficient to detect GUI failures, as some minor differences in GUI content or

views are indeed acceptable between landscape and portrait orientations [18], and the GUI state of the app may differ after a single orientation

change event. After a second consecutive orientation change, the GUI content and layout should be the same as before the first orientation change;

otherwise, we have a GUI failure [12, 15].

The first example of GUI failure occurs in the digital note-taking application OneNote running on Windows 10 Mobile OS. Figure 1 shows this

failure. In this case, when the user performs a long press on a notebook in the list, a contextual menu appears displaying the actions that can be

(A) Before the two orientation
changes

(B) After the two orientation
changes

FIGURE 2 Android Gmail GUI failure

(A) Before the two orientation
changes

(B) After the two orientation
changes

FIGURE 3 GUI fault exposed by Android Agram

4 of 27 AMALFITANO ET AL.

(A) Before the two orientation
changes

(B) After the two orientation
changes

FIGURE 4 Example of iOS GUI failure

performed on the selected document such as syncing it, as shown in Figure 1A. After the DOC, the contextual menu disappears as reported in

Figure 1B. In this case, the application does no longer provide the features for managing the selected notebook.

The second failure occurs on the Gmail app version 6.8.130963407 running on a device equipped with Android 6.0. This failure is shown in

Figure 2. If the user performs a long press on a mail in the list and selects “Other Options” in the application bar, then an action overflow menu

appears. The menu displays the actions that can be performed on the selected mail such as moving it or reporting it as spam, see Figure 2A. After a

DOC of the device, the menu disappears from the user interface, as shown in Figure 2B.

These failures also occur in lesser known apps such as Agram, an Android application that displays anagrams in English. Figure 3 shows the failure

appearing in Agram version 1.4.1 that is in execution on a device equipped with Android 6.0. If the user chooses to create random words, a Dialog

appears prompting the number of words he wants to generate (see Figure 3A. When the user changes the orientation of the device twice, the dialog

disappears and a list of random words is rendered on the screen as shown in Figure 3B.

The last example regards a failure exposed by the mail client application preinstalled in iOS version 9.3.1. This failure is shown in Figure 4. The

user can select one or more incoming messages he wants to manage, as reported in Figure 4A. After the DOC of the device, the application does

not preserve the mail selection made by the user, as shown in Figure 4B. As a consequence, the UI widgets allowing to handle the selected mails (ie,

Cancel, Mark, Move, and Delete) disappear and different ones appear on the user interface.

As these examples show, the observed failures concerned apps from all the major mobile platforms, ie, Android, iOS, and Windows. They affected

even best selling applications and applications usually bundled in mobile devices as preinstalled software. Even if such failures are not so serious

as crashes of the applications, their effects may have a negative impact on the user experience and contribute to nonpositive user ratings. These

examples suggested us that this problem may be relevant and widespread and worth to be further investigated.

3 THE DOC GUI FAILURE CLASSIFICATION FRAMEWORK

In GUI testing, a GUI failure can be defined as a runtime manifestation of an unexpected GUI state [16]. When we test an app by 2 consecutive

orientation changes (or DOC), the expected GUI state should be the same as before the DOC, unless the GUI specifications prescribe a different

behavior.

As a consequence, any discrepancy we observe between the GUI state before the DOC (referred to as start state) and the GUI state after the DOC

(referred to as end state) may represent the manifestation of a GUI failure.

As the previous examples showed, GUI failures may appear in different ways: They may involve different types of GUI objects and may manifest

themselves in diverse ways. Hence, we decided to classify these failures in terms of 2 attributes called scope and mode, respectively.

The scope attribute represents the type of GUI object involved in the manifested GUI failure. The mode attribute indicates how the failure

manifested itself in the GUI end state.

AMALFITANO ET AL. 5 of 27

More precisely, the scope attribute can assume the values of one of the types of GUI objects used for implementing the GUI of the considered app

in the considered mobile platform P. As an example, the types of GUI objects used for implementing GUIs in the Android platform include Button,

ContextMenu, Dialog, and TextView. More in general, we say S(P) the set of possible GUI object types offered by the platform P.

The mode attribute indicates how the failure manifested itself in the GUI end state. In accordance with the IEEE Standard Classification for Soft-

ware Anomalies [19] and other GUI failure classification models proposed in the literature [20], this attribute can assume 1 of the 3 values of Extra,

Missing, and Wrong. These values are defined as follows:

• Extra: Some GUI Objects are present that should not be. In this case, there are one or more objects appearing in the end state of the GUI that

were not present in the start state.

• Missing: Some GUI Objects are absent that should be present. This failure happens when there are one or more objects contained in the start

state that are no longer present in the end state.

• Wrong: Some GUI Objects are displayed in an incorrect state. This failure happens when one or more objects of the start state are contained in

the end state but look different.

Using these 2 attributes, any DOC GUI failure can be characterized

by a couple (mode, scope), where

• mode ∈ M = {Extra,Missing,Wrong},

• scope ∈ S(P).

Figure 1 provides an example of a GUI implemented in the Windows Phone Toolkit platform. This GUI presents a failure that can be characterized

by the couple (Missing, Context Menu), because the GUI after the DOC misses the Context Menu shown in the former GUI.

Figures 2 and 3 show 2 examples of DOC GUI failures observed in the Android context. Figure 2 provides another example of Missing mode GUI

failure involving an ActionOverflowMenu object. The 2 GUIs differ for one single object.

Figure 3 presents a more complex case where the same DOC event triggered 2 distinct failures, ie, a Missing failure and an Extra failure. The GUI

after the DOC event presents indeed an extra ListView object, and at the same time, it misses the Dialog object that was rendered in the former GUI.

Figure 4 provides an example of 3 DOC GUI failures observed in the iOS context. According with our classification framework, these failures are

characterized by the couple (Wrong, UITableView), since the selected property of the items in the UITableView changes state after the DOC.

In the following, we provide a set of definitions that can be used to formalize the DOC GUI failures we are interested in and to classify them with

respect to their mode and scope attributes.

3.1 GUI Objects

The DOC GUI failures involve one or more GUI objects. A GUI object is a graphical element of the User Interface that is characterized by a set of

properties, such as its type, position, size, and background color, which vary with the type of the considered object. Each property assumes values

that are drawn from a predefined set of values associated with that property. The set of properties of each object and the set of values each property

may assume depend on the specific development framework used for implementing GUIs in the considered mobile operating platform.

Definition 1. P is the set of properties of all the GUI objects provided by a given mobile development framework (ie, Android SDK, iOS UIKit,

and Windows Mobile WPToolkit).

Definition 2. ∀ pi ∈ P ∃! Vpi
, where Vpi

is the set of all the possible values that pi can assume.

Definition 3. A GUI object o is defined as o ≜ {(pi, vj) ∶ pi ∈ P, vj ∈ Vpi
}.

If needed, we use the dot notation for referring to the properties' value of a given object, ie, the notation o.pi indicates the value vj assumed

by the property pi of the object o.

Among the set of properties of an object, we need to focus on a subset that is critical for identifying it and defining its layout, ie, its type,

position, and size.

On the basis of the values assumed by these 3 properties, a GUI object is of a given type, is located on a precise position on the screen, and

occupies a specific area of the GUI. We define P∗ as the set of fundamental object properties.

Definition 4. P∗ ≜ {type, position, size} ⊂ P

3.2 GUI state and state transition

We formally describe the GUI state as the set of GUI objects that it contains.In mobile applications, like in any other event based software system,

single events or event sequences may cause state transitions. We define the transition between 2 states, due to the triggering of one or more events,

as a function that associates 2 states.

6 of 27 AMALFITANO ET AL.

The DOC is a sequence of 2 consecutive orientation change events.These concepts are explained by the following definitions.

Definition 5. GUI state S is defined by the set of GUI objects it contains. S ≜ {o1, o2, … , on}.

Definition 6. Given an Application Under Test (AUT), the set of Application States of AUT (ASAUT) is defined by all the GUI States the AUT can

render to the user: ASAUT ≜ {S1, S2, … , Sn}.

Definition 7. An event e is a function that associates 2 GUI states of an AUT. e ∶ ASAUT → ASAUT.

Definition 8. An event sequence es is a predefined ordered sequence es =< e1, … , en > of n events, n ≥ 1, that must be sequentially triggered

starting from an initial GUI state of the AUT for reaching a final state of the AUT. Formally, an event sequence is a function that associates 2 GUI

states of an AUT. es ∶ ASAUT → ASAUT.

Definition 9. The DOC is an event sequence consisting in 2 consecutive orientationChange events. DOC ≜<

orientationChange, orientationChange >.

3.3 Equivalence and similarity between GUI objects

The formal definition of DOC GUI failure of different types will rely on the equivalence and similarity relations between GUI states. These relations

in turn depend on the equivalence and similarity relations between the GUI component objects.

We assume that 2 objects are similar iff their type, position, and size properties assume exactly the same values. On the other side, 2 objects are

equivalent iff all their properties assume exactly the same values.

We say that 2 GUI states are equivalent if for each object of the former GUI state, there is exactly one equivalent object in the latter state, and

vice-versa, for each object of the latter GUI state, there is exactly one similar object in the former state.

Figure 5A and 5B reports 2 GUIs of the Bookworm app that are not equivalent since they include 3 not equivalent objects.

They have 2 similar TextView objects since they assume the same values the 3 fundamental properties, but these objects differ for their textual

values. Analogously, the ImageView object differs for the source value it assumes in the 2 graphical user interfaces. The Button object instead is

equivalent among the 2 GUIs.

Definition 10. Two GUI objects oi and oj are similar when only their fundamental properties values coincide, while they may differ as to other

properties.

oi ∼ oj ⇐⇒

{
∀(pu, vt) ∈ oi ∶ pu ∈ P∗,∃!(pq, vk) ∈ oj ∶ pu = pq, vt = vk,

∀(pq, vk) ∈ oj ∶ pq ∈ P∗,∃!(pu, vt) ∈ oi ∶ pu = pq, vt = vk

(A) GUI one (B) GUI two

FIGURE 5 Example of 2 similar GUIs that are not equivalent

AMALFITANO ET AL. 7 of 27

Definition 11. Two GUI objects oi and oj are equivalent when they have the same set of properties and each property assumes the same value

in both objects.

oi ≅ oj ⇐⇒

{
∀(pu, vt) ∈ oi,∃!(pq, vk) ∈ oj ∶ pu = pq, vt = vk,

∀(pq, vk) ∈ oj,∃!(pu, vt) ∈ oi ∶ pu = pq, vt = vk.

(A) Start GUI (B) End GUI showing Extra fail-
ure

(C) End GUI showing Missing
failure

(D) End GUI showing Wrong
failure

FIGURE 6 Example of 2 similar GUIs that are not equivalent

8 of 27 AMALFITANO ET AL.

Definition 12. Two GUI states Si and Sj are equivalent

Si ≅ Sj ⇐⇒

{
∀ot ∈ Si,∃!ok ∈ Sj ∶ ot ≅ ok,

∀ok ∈ Sj,∃!ot ∈ Si ∶ ok ≅ ot.

3.4 DOC GUI Failures

We exploit the definitions presented so far to formalize the different types of DOC GUI failures. Given a GUI start state S and the GUI end state

doc(S) reached after a doc event, we have a DOC GUI failure if and only if S and doc(S) are not equivalent.

Definition 13. Given a GUI state S ∈ ASAUT, the DOC causes a DOC GUI failure if S ≇ DOC(S).
Now, we leverage the definitions given in this section to define the properties that can be checked to characterize a DOC GUI failure in terms

of its mode and scope.

Definition 14. The GUI property that must be checked to assess the presence of an Extra GUI failure due to a DOC event is defined as follows:

∃ oj ∈ DOC(S) ∶ oj ≁ oi,∀ oi ∈ S ⇒ ∃ DOC GUI Failure ∶ (DOC GUI Failure).type = (Extra, oj.type).

Comparing the GUI state in Figure 6A and the one in Figure 6B obtained after a DOC event, we see that there is a Dialog object appearing in

the end state that is not present in the start state; thus, we have a DOC GUI failure having Extra mode and Dialog scope.

Definition 15. The GUI property that must be checked for assessing the presence of a Missing GUI failure due to a DOC event is defined as

follows:

∃ oj ∈ S ∶ oj ≁ oi,∀ oi ∈ DOC(S) ⇒ ∃ DOC GUI Failure ∶ (DOC GUI Failure).type = (Missing, oj.type).

Comparing the GUI state in Figure 6A and the one in Figure 6C obtained after a DOC event, we see that there are 2 Button objects in the start

state that are no longer present in the end state; thus, we have 2 DOC GUI failures having Missing mode and Button scope.

Definition 16. The GUI property that must be checked for assessing the presence of a Wrong GUI failure due to a DOC event is defined as

follows:

∃ oj ∈ S ∶ ∃ o(i) ∈ DOC(S), o(j) ∼ o(i) , o(j) ≇ o(i) ⇒ ∃ DOC GUI Failure ∶ (DOC GUI Failure).type = (Wrong, oj.type).

As an example, considering the GUI state in Figure 6A and the one in Figure 6D obtained after a DOC event, we see that there are 2 EditText

objects in the start state that are still contained in the end state but have a different text value; thus, we have 2 DOC GUI failures having Wrong

mode and EditText scope.

4 EXPLORATORY STUDY 1

Our motivating examples showed that DOC GUI failures affect mobile apps irrespective of their mobile platform. We decided to investigate such

failures in the context of Android apps, because of the great success of this platform† and to the large availability of apps in markets and open-source

repositories.

We conducted our first study with the aim of exploring and classifying DOC GUI failures occurring in real Android apps. In this study, we

considered open-source apps, which gave us the access to their source code. The study aimed at achieving the following goals:

To perform this study, we followed an experimental procedure based on 5 steps: Objects selection, Apps testing, DOC GUI failures validation,

DOC GUI failures classification, and Common faults identification.

† https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems

AMALFITANO ET AL. 9 of 27

TABLE 1 Dataset 1 construction

Criteria No. of Apps

Apps in F-Droid 2030

Provide an issue tracker 1807

Updated in the last 12 months 762

Allow Orientation Change 685

Dataset 68

TABLE 2 Dataset 1

App Version Category App Version Category

A Time Tracker 0.21 Time Odyssey 1.1.0 Multimedia

A2DP Volume 2.11.11 Multimedia OpenFood 0.4 Sports & Health

AFWall+ 2.8.0 Security ownCloud News 0.9.9.2 Internet

agram 1.4.1 Reading Padland 1.3.2 Writing

Alarm Klock 2.2 Time PassAndroid 3.3.2 Reading

Amaze File Manager 3.1.1 System Periodical 0.3 Science & Education

AntennaPod 1.5.2.0 Multimedia Pinpoi 1.4.3 Navigation

BankDroid 1.9.10.6 Money Port Knocker 1.0.9 Security

BeeCount 2.4.1 Writing Prayer Times 3.6.3 Time

Berlin-Vegan 2.0.7 Navigation Primary 0.1 Science & Education

Blitzmail 0.6 Internet ReGex 1.3.1 Games

Cache Cleaner 2.2.0 System Ruler 1.0.1 Multimedia

Calendar Notifications Plus 1.3.21 System Shorty 1.06 Multimedia

Chibe 1 Time Sieben 1.9 Sports & Health

Colorpicker 1 System Silectric 1.2.01 Money

Currency 1.04 Money Simple Dilbert 4.2 Reading

DNS66 0.2.1 Internet Simple Solitaire 2.0.1 Games

DroidShows 7.3.1 Multimedia Slide 5.5.4 Reading

Etar 1.0.8 Time SpaRSS 1.11.8 Reading

ExprEval 1 Science & Education StageFever 1.0.9 Multimedia

File Manager 1.24 System SteamGifts 1.5.2 Internet

FOSDEM companion 1.4.2 Time Step and Height counter 1.2 Sports & Health

Gallery 1.48 Multimedia Stringlate 0.9.3 Development

ImapNotes2 4.9 Internet SyncThing 0.9.1 Internet

Iven News Reader 3.0.2 Reading Tap'n'Turn 2.0.0 System

LeafPic 0.5.2 Multimedia Taskbar 3.0.2 System

Legeappen 3 Sports & Health Transdroid Torrent Search 3.7 Internet

Loop Habit Tracker 1.6.2 Sports & Health Transistor 2.1.7 Multimedia

Lyrically 0.5 Multimedia Unit Converter Ultimate 4.2 Science & Education

Malp 1.1.1 Multimedia uNote 1.1.4 Writing

Mather 0.3.0 Science & Education Weather 3.4 Internet

Network Monitor 1.28.10 Connectivity Who Has My Stuff? 1.0.25 Money

NewPipe 0.8.7 Multimedia WiFi Analyzer 1.6.5 Connectivity

NewsBlur 5.0.0b3 Reading World Clock & Weather 1.8.5 Time

4.1 Objects selection

In this step, we selected a sample of apps from a repository of open-source Android apps. We chose to consider F-Droid,‡ a well-known repository

of Free and Open-Source Software (FOSS) applications for the Android platform. F-Droid offers direct access to app source code and to their devel-

opers through code repository and issue tracker. It has been used in many other studies on Android testing proposed in the literature [21, 22, 23]

and contains a growing number of applications belonging to different categories.

‡ https://f-droid.org/

https://f-droid.org/

10 of 27 AMALFITANO ET AL.

In the selection activity, we required the apps to be candidate to expose a DOC GUI failure, by allowing the orientation change of the screen. We

also required the availability of the app developers, to be able to contact them and receive their feedback about the DOC GUI failures detected in

the study. We needed indeed their opinion to discard the apparent DOC GUI failures that were instead a manifestation of an expected GUI behavior,

ie, a feature of the analyzed application.

To this aim, we used the 3 inclusion criteria listed below to select an object application from F-Droid.

1. Issue tracker availability: The app should be linked to its issue tracker.

2. Active developers: The app should have been updated in the last 12 months since the study started. In this way, we felt confident that the selected

application was still maintained by its developers.

3. Orientation change enabled: The app should have at least one activity that provides both screen portrait and landscape layouts.

Table 1 shows how we constructed our dataset. When our study was performed, the F-Droid repository contained 2030 apps, but only 1807 of

them provided an issue tracker. Among these 1807 apps, 762 were updated in the last 12 months. Of the 762 apps, 685 allowed orientation changes.

Finally, our dataset was built by randomly selecting the 10% of the 685 that met our criteria. Table 2 lists name, version, and category of the 68 apps

in our dataset that covers 14 of the 17 categories provided by F-Droid.

4.2 Apps testing

The apps in the dataset were tested to find DOC GUI failures. To this aim, we exploited a test amplification strategy in which new test cases were

obtained starting from an initial set of existing test cases. The approach of enhancing existing test cases in the domain of Android mobile applications

has been used by Zhang and Elbaum [24] and by Adamsen et al [12].

AMALFITANO ET AL. 11 of 27

To obtain the initial set of test cases, we involved 12 master students at the University of Naples. The students had been trained about automatic

testing of GUI-based applications by techniques of Capture & Replay. Each student was asked to record a number of test cases sufficient to cover the

features provided by 4 or 5 applications of the dataset. The students had one semester to accomplish their tasks, and each application was tested

by a single student. The students exploited the Robotium Recorder tool § for recording GUI test cases.

We automatically amplified the test cases recorded by the students by injecting after each user event a snippet of Robotium code that fires a

DOC and checks the presence of the 3 DOC GUI failure modes through appropriate assertions. These assertions are based on the definitions given

in Section 3.4. The code reported in the Listing 1 shows an example of an amplified test case for the A Time Tracker app. After each event recorded

by the users, such as EVENT 1 and EVENT 2, the test case is amplified by adding the code that describes the start GUI state (Get GUI state

before DOC), fires the double orientation (DOUBLE ORIENTATION), describes the end GUI state (Get GUI state after DOC), and matches

the 2 descriptions (CHECK ASSERTIONS).

After this activity, the amplified test cases were replayed for testing the apps on a real LG G4 H815 device equipped with Android 6.0. We collected

the GUI failures automatically detected by these test cases.

4.3 DOC GUI failure validation

This step was performed with the aim of obtaining a set of unique and validated DOC GUI failures.

At first, one PhD student and one research fellow analyzed the collected GUI failures to remove the duplicate ones and obtain a list of unique

DOC GUI failures.

We made the assumption that when 2 GUI failures are characterized by the same scope and mode, have equivalent start states and equivalent

end states, and affect the same app, they are very likely to be considered as duplicate GUI failures. We could have reported all the detected GUI

failures to developers, giving them the responsibility to decide whether or not 2 or more failures were actually duplicate GUI failures. However, we

preferred this way of counting to not annoy the developers by flooding them with multiple similar (if not identical) requests.

Then we had to assess whether each failure was actually the manifestation of an incorrect GUI state rather than an intended behavior of the

application. To this aim, we chose to consult the developer of the apps and opened an issue for each failure on the F-Droid issue tracker. Each issue

contained a description of the DOC GUI failure we had observed and a sequence of events leading to it. Once we received the developer answers, we

analyzed them to have the evidence about the issues that were accepted or rejected. The failures whose issues had been accepted by the developers

were considered as validated.

Table 3 reports the data we collected at the end of the validation activity. For each application, we reported the number of the unique DOC GUI

failures we found, the number of accepted issues (giving the number of validated failures), the number of the issues that were not accepted by the

developers (ie, the number of false positives), and the number of issues for which we did not receive any answer from the developers. As data show,

we detected a total of 439 unique GUI failures in 59 open-source applications, whereas 9 out of 68 applications did not show any DOC GUI failure.

Altogether, 298 issues over 439 were accepted by the developers. Sixty-one issues were not accepted by the developers as failures, whereas we did

not receive any answer for 80 issues that remained as pending. Among the 298 accepted failures, only 7 were already known to their developers.

§ https://robotium.com/products/robotium-recorder

https://robotium.com/products/robotium-recorder

12 of 27 AMALFITANO ET AL.

TABLE 3 DOC GUI failures found in open-source applications

App DOC GUI failures Accepted issues Not accepted Not answered

A Time Tracker 10 10 0 0

A2DP Volume 10 10 0 0

AFWall+ 8 8 0 0

agram 9 9 0 0

Alarm Klock 2 2 0 0

Amaze File Manager 18 0 18 0

AntennaPod 20 20 0 0

BankDroid 4 0 0 4

Bee Count 7 7 0 0

Berlin-Vegan 0 0 0 0

Blitzmail 0 0 0 0

Cache Cleaner 0 0 0 0

Calendar Notifications Plus 10 0 0 10

Chibe 2 0 0 2

Colorpicker 2 2 0 0

Currency 10 9 1 0

DNS66 1 1 0 0

DroidShows 0 0 0 0

Etar 18 3 0 15

ExprEval 1 1 0 0

File Manager 9 9 0 0

FOSDEM companion 5 4 1 0

Gallery 8 8 0 0

ImapNotes2 3 0 0 3

Iven News Reader 1 0 0 1

LeafPic 9 9 0 0

Legeappen 13 13 0 0

Loop Habit Tracker 8 8 0 0

Lyrically 3 1 0 2

Malp 5 4 1 0

Mather 1 1 0 0

Network Monitor 0 0 0 0

NewPipe 12 0 0 12

NewsBlur 16 15 1 0

Odyssey 9 3 6 0

OpenFood 0 0 0 0

ownCloud News 7 7 0 0

Padland 8 8 0 0

PassAndroid 12 0 0 12

Periodical 4 4 0 0

Pinpoi 5 5 0 0

Port Knocker 5 1 0 4

Prayer Times 13 13 0 0

Primary 19 19 0 0

ReGex 4 3 1 0

Ruler 4 4 0 0

Shorty 1 1 0 0

Sieben 5 0 5 0

Silectric 4 2 0 2

Simple Dilbert 6 2 4 0

Simple Solitaire 2 2 0 0

continues

AMALFITANO ET AL. 13 of 27

TABLE 3 Continued

App DOC GUI failures Accepted issues Not accepted Not answered

Slide 0 0 0 0

SpaRSS 7 0 0 7

StageFever 1 1 0 0

SteamGifts 7 7 0 0

Step and Height counter 9 9 0 0

Stringlate 7 7 0 0

SyncThing 7 7 0 0

Tap'n'Turn 0 0 0 0

Taskbar 17 17 0 0

Transdroid Torrent Search 12 0 12 0

Transistor 0 0 0 0

Unit Converter Ultimate 2 2 0 0

uNote 9 9 0 0

Weather 11 0 11 0

Who Has My Stuff 6 0 0 6

WifiAnalyzer 10 10 0 0

World Clock & Weather 1 1 0 0

Total 439 298 61 80

We analyzed the answers given by developers who refused the issues. In many cases, we observed that the developers claimed that there was no

way to avoid the reported issues, since they were due to the default behavior of the Android framework. A few developers' answers were ambiguous

and did not clearly state whether the issue was accepted or not. In these borderline cases, we decided not to count them as accepted failures to

avoid that the experimental results were biased by our personal and possibly misleading interpretations of the developers' answers. As a result, the

data reported in Table 3 can be considered as a lower bound.

4.4 DOC GUI failure classification

In this step, we characterized each validated GUI failure on the basis of its mode and scope,thus obtaining different classes of GUI failures.

For each class of DOC GUI failure, we evaluated how many times it occurred and the number of applications that exposed it. Table 4 reports the

results of this classification.

As the table shows, we obtained 13 classes of Missing GUI failures that involved 13 different types of GUI objects. We found 19 classes of Wrong

GUI failures, involving 19 different types of GUI objects, and just 3 classes of Extra GUI failures.

The Missing and Wrong classes of failures were the most frequent ones, with overall 192 and 101 occurrences of failures, respectively, whereas

the Extra failures occurred fewer times, only 5 times over 298.

If we consider the types of GUI objects involved in failures, we can observe that there are GUI object types more involved in failures than other

ones, ie, Dialog (146 occurrences), ListView (28 occurrences), ScrollView (21 occurrences), and TextView (14 occurrences).

As to the number of affected apps, some failure classes such as (Missing, Dialog), (Wrong, ListView), and (Wrong, ScrollView) affected more

applications than others, since each of them recurred in more than 10 different apps. The (Missing, Dialog) failure type occurred 141 times over 298

in 34 applications. The (Wrong, ListView) failure appeared 27 times in 16 apps, whereas the (Wrong, ScrollView) involved 13 applications with 19

occurrences.

Details about the dataset and the detected GUI failures have been made publicly available¶; for each reported GUI failure, we provide a link to

the issue opened in the app bug tracker.

4.5 Common faults identification

In the previous step, we observed that 3 classes of DOC GUI failures, ie, (Missing, Dialog), (Wrong ListView), and (Wrong, ScrollView) occurred

multiple times and affected more than 10 applications.

¶https://docs.google.com/spreadsheets/d/1k8IbndKH9K-9kmTGI9Wnc-FPlrOOEJ2dCRd8Uqu9JGk/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1k8IbndKH9K-9kmTGI9Wnc-FPlrOOEJ2dCRd8Uqu9JGk/edit?usp=sharing

14 of 27 AMALFITANO ET AL.

TABLE 4 Classification of the DOC GUI failures found on the open source applications

Failure mode Failure scope No. of occurrences No. of involved apps

Dialog 141 34

Context Menu 11 6

Action Overflow Menu 8 5

Search View 7 6

Text View 5 4

Contextual Action Bar 5 4

Missing Button 4 3

Edit Text 4 3

OptionsMenu 2 2

Spinner 2 1

Toolbar 1 1

List View 1 1

Checkbox 1 1

ListView 27 16

ScrollView 19 13

TextView 9 7

Spinner 6 4

Edit Text 6 4

Number Picker 5 3

Recycler View 4 3

User Defined Widget 4 3

Web View 4 3

Wrong Dialog 4 2

ActionMenuItem View 4 2

Image View 2 2

Time Picker 1 1

Checkbox 1 1

Button 1 1

Date Picker 1 1

HorizontalScrollView 1 1

Navigation View 1 1

TabHost 1 1

Button 2 1

Extra Scroll View 2 1

Dialog 1 1

• Missing Dialog: This failure consists in the disappearance of a Dialog object after a DOC event. A Dialog is a small window that prompts the user

to make a decision or enter additional information. It does not fill the screen and is normally used for modal events that require users to take an

action before they can proceed;

• Wrong ScrollView: This failure consisted in the loss of the current state of a ScrollView object. A ScrollView contains and shows a list of GUI

objects. Users can scroll the list and see the items contained in it;

• Wrong ListView: This failure consisted in the loss of the current state of a ListView object. A ListView shows a list of UI objects that can be

vertically scrolled by the user, allowing it to be larger than the physical display. A ListView is filled using an adapter that pulls content from a source

such as an array or database query and converts each item result into a view that is placed into the list.

Since we had a significant sample of failures of these 3 types, we decided to investigate them to assess whether the occurrences of the same types

of failure had similar causes.

We analyzed the source code of the Android apps exposing these failures and looked for the faults causing them. In our analysis, we considered

the mechanisms used by Android to manage the orientation changes. When an orientation change occurs, Android destroys the running Activity

and then restarts it. The Activity lifecycle callback method onDestroy() is called, followed by onCreate(). The restart behavior is designed to

adapt the app to the new layout configuration, without loss of user data or without disrupting the user experience. This Android-specific feature

must be taken into account by developers who should use the APIs provided by Android and follow the guidelines that describe the correct usage

of the Android framework components. Analogously, testers should verify that the application handles properly the orientation change events.

As an example, Android guidelines prescribe that the control of a dialog GUI object (deciding when to show, hide, and dismiss it) should be done

through the API, not with direct calls on the dialog instances.# Any violation of such guidelines may result in inconsistencies in the app behavior.

https://developer.android.com/reference/android/app/DialogFragment.html

https://developer.android.com/reference/android/app/DialogFragment.html

AMALFITANO ET AL. 15 of 27

At the end of our analysis, we actually detected 6 classes of common faults that could be considered as errors in the usage of Android programming

features, rather than mistakes related to the logic of a specific application.

These faults occurred multiple times, even in different apps, were often localized in the same category of Android code components, had the same

characteristics, and could be solved by similar code fixes.

Hence, we were able to describe each class of fault using a template made of 7 characteristics:

• Id: an identifier used to refer to the common fault;

• Associated failure: the failures that are found to be caused by a fault that can be traced back to the described common fault;

• Location: information about the Android app component where the fault can be detected;

• Background: this section contains general background information that is useful or interesting to better understand the common fault;

• Description: general characteristics of the considered common fault;

• A possible fix: this section explains an alternative solution that implement the same features intended by the developer but prevent the failures

listed in the associated failure section;

• Example: an excerpt of code from a real app that contains an instance of the considered fault and a possible code fix.

In the following, we report the descriptions of the 6 classes of faults.

4.5.1 Show method called on Dialog or its Builder

Id: SDB;

Associated failure: Missing Dialog;

Location: an object calling the static showmethod of the Dialog or the AlertDialog Builder classes;

Background: Android provides a specific guideline to deal with Dialog objects‖; it states that Dialogs should be managed by theDialogFragment

class, which ensures a correct handling of lifecycle events, such as when the user presses the Back button or changes the orientation of the

screen**;

Description: The app code contains calls to the public methods offered by the dialog object or its builder to show a dialog. This will correctly pop up

the dialog on the screen, but the dialog will disappear when the activity is destroyed and recreated due to orientation changes;

A possible fix: The developer can implement a class that extendsDialogFragment and create the desired dialog in itsonCreateDialog() call-

back method. He creates an instance of this class and callsshow() on that object. The dialog appears, but it will not disappear when the activity

is destroyed and recreated due to orientation changes; Example:We found an example of this fault in the MainActivity class of the app Peri-

odical. When the user clicks on the Restore option in the action overflow menu, a dialog pops up. But it disappears on orientation changes. Listing

2 shows the relevant code. We highlighted in red the call to the show() method of the AlertDialog builder instance.The green highlighted

code shows a possible and effective fix; the same dialog is constructed in the DialogFragment.onCreateDialog() callback method.

‖https://developer.android.com/guide/topics/ui/dialogs.html
** https://developer.android.com/reference/android/app/DialogFragment.html

https://developer.android.com/guide/topics/ui/dialogs.html
https://developer.android.com/reference/android/app/DialogFragment.html

16 of 27 AMALFITANO ET AL.

4.5.2 Fragment created twice on Activity restart

Id: FTA;

Associated failure: Missing Dialog, Wrong ListView;

Location: onCreate callback method of a class that extends PreferenceActivity or PreferenceFragment classes;

Background: To provide settings for the app, Android recommends to use the Preference API. Instead of using View objects to build the user

interface, settings are built using various subclasses of the Preference class declared in an XML file.

To load the preferences, the developer should call the method addPreferencesFromResource() during the onCreate() callback of a

PreferenceActivity or, preferably, a PreferenceFragment;

Description: In the official tutorial on how to instantiate a PreferenceFragment within an activity, there is a faulty code snippet that creates a

new PreferenceFragment each time the host activity is created. It results in a loss of state of the settings screen when the device is rotated.

Our study detected that this code snippet is widely used among Android developers;

A possible fix: One simple solution is to add a check that determines whether the settings screen has already been created;

Example: Listing 3 shows an example of this fault; we detected it in the SettingsActivity class of the app StageFever. When the user click on

the Font Size of Notes options in the app settings, a dialog pops up. But it disappears on orientation changes. We added and highlighted in green

a simple control that prevents the fragment PrefsFragment from being recreated if it has not been created for the first time but its state has

been restored from the savedInstanceState bundle.

4.5.3 Missing Id in XML layout

Id: MIXL;

Associated failure: Wrong ScrollView;

Location: ScrollView element in layout XML files;

Background: For the Android system to restore the state of the views contained in an activity, each view must have a unique ID, supplied by the

android:id attribute.†† Developers often rely heavily on visual editors to build layouts for their apps. The visual Layout Editor offered by

Android Studio,‡‡ the official IDE for Android platform development, allows the developers to build layouts by dragging widgets into a visual

design editor instead of manually writing the layout XML. However, a ScrollView added to a layout via visual editor will miss the id attribute.

Description: The presence of aScrollView element in the XML file describing the activity layout with no id attribute set can cause the loss of the

ScrollView state, eg, scroll position, when the user rotates the device;

A possible fix:To set an id attribute for the ScrollView element in the XML file describing the activity layout;

††https://developer.android.com/guide/components/activities/activity-lifecycle.html
‡‡https://developer.android.com/studio/index.html

https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/studio/index.html

AMALFITANO ET AL. 17 of 27

Example: The xml code in Listing 4 defines the presence of a ScrollView in the layout of the event details fragment. When the user scrolls down the

text that describes an event and then changes the orientation, the scroll position goes back to the top losing the effect of the user interaction.

The green highlighted code is the fix of the developer that solved the bug and closed our issue§§ adding an id to the scrollview.

4.5.4 Aged target SDK version

Id: ATSDKV

Associated failure: Wrong ScrollView;

Location: android:targetSdkVersion attribute of uses-sdk element in the XML manifest file, ie, AndroidManifest.xml;

Background: Every Android app must have a manifest XML file that provides essential information about the app itself to the Android system. The

element uses-sdk has the android:targetSdkVersion attribute that is used to designate the API level that the application targets;

Description: In the manifest file, the element uses-sdk has the android:targetSdkVersion value lower than 19. In this case, the app loses

the ScrollView position on orientation change caused by a limitation of the framework version lower than 19. These limitations that have

been fixed in the later versions of the Android SDK;

A possible fix: To set the android:targetSdkVersion value to 19 or higher in the manifest;

Example: Listing 5 shows an excerpt from the Currency app manifest file that targets the version 17 of the Sdk. The implementation of onSave-

InstanceState method of the ScrollView class in API versions lower than 19 does not retain the ScrollView position on configuration

changes. Setting an API level to 19 or higher, as shown in the green highlighted code, fixes the issue as the ScrollView position is saved and

restored directly by the system.

4.5.5 List adapter not set in onCreate method

Id: LANSCM;

Associated failure: Wrong ListView;

Location: a class extending the Activity class where the list adapter setter method is called in a lifecycle callback method different from

onCreate();

Background: The ListView adapter binds source data to its layout. The adapter setter should be called in the onCreate() callback method that is

responsible for retrieving and restoring the state of the list every time the activity is started or resumed;

Description: The adapter setter is called in a lifecycle method different from onCreate() and the developer does not explicitly restore the state

of the list. The list state will be lost on orientation change, eg, the position of the scrollable list is not preserved;

A possible fix: To call the adapter setter inside the onCreate()method;

Example: We found an example of this fault in the ListProjectActivity class of the app BeeCount. When the user scrolls down the list of

projects and then changes the orientation, the scroll position goes back to the top loosing the effect of the user interaction. As we see in Listing

6, the showData method that sets the list adapter is called by the overridden onResume method.To fix this issue, we simply moved the call to

showData in the onResumemethod.

4.5.6 List filled through background thread

Id: LFTBT;

Associated failure: Wrong ListView;

§§https://github.com/cbeyls/fosdem-companion-android/commit/b2e50f8e4dea7739f776373f1c3669ce70c2deb5

https://github.com/cbeyls/fosdem-companion-android/commit/b2e50f8e4dea7739f776373f1c3669ce70c2deb5

18 of 27 AMALFITANO ET AL.

TABLE 5 Classes of common faults

Fault acronym Fault name

SDB Show method called on Dialog or its Builder

FTA Fragment created Twice on Activity restart

MIXL Missing Id in XML Layout

ATSDKV Aged Target SDK Version

LANSCM List Adapter Not Set in onCreate Method

LFTBT List Filled Through Background Thread

TABLE 6 Relationships matrix between DOC GUI failures and common faults

SDB FTA MIXL ATSDKV LANSCM LFTBT

Missing Dialog 23/34 10/34

Wrong ScrollView 10/13 3/13

Wrong ListView 10/16 3/16 4/16

Location: class that extends the helper class AsyncTask and calls the list adapter setter method;

Background:To fetch large data in the main UI thread can cause poor UI responsiveness or even Application Not Responding (ANR) errors. Thus,

developers should fetch the data in another thread¶¶;

Description: Extending the helper class AsyncTask allows the developer to perform data fetching operations on a background thread and pub-

lish results on the main UI thread, ie, setting the ListView adapter, without having to manipulate threads and/or handlers.## Still the developer

is responsible for managing both the background thread and the UI thread through various activity or fragment lifecycle events, such as

onDestroy() and configurations changes;

A possible fix: To use a Loader class, such as an AsyncTaskLoader, to load data from a data source for display in an Activity or Fragment. Loaders

persist and cache results across configuration changes to prevent duplicate queries‖‖;

Example: Listing 7 shows an example of this fault; we detected it in the lcd10Activity class of the app LegenAppen. Each time the activity is

created, a getChapterTask asynchronous task is instantiated and executed to fetch the data and fill the ListView. This results in a loss of the

ListView state, eg, scroll position, on orientation changes.

4.5.7 Common faults summary

Table 5 summarizes the 6 classes of common faults we found and reports the fault acronym and the name we gave to the fault.

In Table 6, we report the relation among the 3 specific types of failures we considered in the fault study and the 6 classes of faults we inferred.

¶¶ https://developer.android.com/guide/components/processes-and-threads.html
##https://developer.android.com/reference/android/os/AsyncTask.html
‖‖https://developer.android.com/guide/components/loaders.html

https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/guide/components/loaders.html

AMALFITANO ET AL. 19 of 27

Each element of the table reports the number of apps where the failure type occurred because of a common fault over the total number of

apps affected by that failure type. As the table shows, the SDB fault is the one that occurred mostly, since it involved the largest number (23)

of apps.

MIXL is particularly relevant since it caused (Wrong, ScrollView) failures in 77% (10∕13) of the apps affected by this failure.

As Table 6 shows, the DOC GUI failures were not always caused by the same fault. Different faults caused the same failure type in different apps.

Moreover, we observed that the FTA fault originated 2 different failures type in different apps.

4.6 Study conclusion

At the end of the exploratory study, we obtained several interesting results that allowed us to reach the 3 goals of the study.

As for the first goal G1 of the study, the experimental results show that GUI failures due to orientation changes of the device are widespread

among real Android apps. Indeed, we verified that more than the 86% of the analyzed app sample exposed at least one DOC GUI fail-

ure. This datum suggests that the likelihood for an app user to encounter these failures is very high, at least when he uses open-source

applications.

We cannot exclude that other testing techniques, different from the one used in our study, could expose even more failures. However, the

percentage of apps affected by this problem is high enough to confirm the relevance of this topic to the community of Android developers and testers.

Regarding the second goal G2, the classification of GUI failures on the basis of their mode and scope showed us that most of the failures belonged

to the category of Missing objects and Wrong objects, with 64% and 34% of apps affected by them, respectively.

20 of 27 AMALFITANO ET AL.

As for the scope of the failures, there are 4 types of GUI object that occurred more than 10 times and involved the 70% of the failures we found.

Lastly, we discovered that 3 types of failure, ie, (Missing, Dialog), (Wrong, ListView), and (Wrong, ScrollView), were more widespread among

the apps than the other ones, since each one of them affected more than 10 applications. This result provided us a subsets of failures worth to be

investigated deeper.

Concerning the goal G3, our results showed that a subset of observed types of failures were due to the same classes of faults that occurred in

several different applications. Thanks to our analysis, we could conclude that these classes of faults can be considered specific of Android apps,

rather than isolated programming errors.

5 EXPLORATORY STUDY 2

Our first exploratory study provided us evidence about the widespread diffusion of DOC GUI failures of different types in real Android apps coming

from the open-source world. Since we did not want to limit the validity of our conclusions solely to the context of open-source apps, which are usually

less mature than the ones available through the official app market, we decided to perform a second study. In this further study, we extended our

analysis to the context of industrial-strength apps selected from the Google Play Android app market, with the aim of reaching the same 2 goals G1

and G2 of the previous study. The study does not have the G3 goal of the former study, because of our impossibility of accessing the source code of

the non–open-source considered apps.

In this study, we followed an experimental procedure very similar to the one performed in the previous study. Here, we executed 4 steps: Objects

selection, Apps testing, DOC GUI failures validation, and DOC GUI failures classification.

5.1 Objects selection

We picked Android apps belonging to the official Google Play Store that satisfied the following inclusion criteria.

The app had to

1. have more than 50 M installs;

2. have an average rating above 4 stars;

3. allow orientation change.

We used these requirements to select the most popular apps allowing the orientation change of the display and having the best quality perceived

by the users. We randomly selected 10 apps that met the proposed inclusion criteria. Table 7 lists name, version, number of installs, and average

rating of each selected app. These data are related to the period in which we performed our study.

5.2 Apps testing

In this step, we tested all the applications by exploiting the same amplification technique used in the former study for testing the open source apps.

To obtain the initial set of test cases, we selected 5 master students not involved in the previous study. We asked each student to record through the

Robotium Recorder tool a number of test cases able to cover the features provided by the 10 applications under test. The test cases collected by the

students were amplified to fire a DOC and then to check the presence of the 3 DOC GUI failure modes through appropriate assertions after each

recorded event, according to the presented in Section 4. The amplified test cases were launched on a real LG G4 H815 device with Android 6.0. We

collected the GUI failures automatically detected by these test cases.

AMALFITANO ET AL. 21 of 27

TABLE 7 Dataset 2

App Version Category Installs Rating

App Lock 2.22.1 Tools 100 M 4.34

Dropbox 27.1.2 Productivity 500 M 4.40

Duolingo 3.39.1 Education 50 M 4.69

Gmail 6.11.27.141872707.release Communication 1000 M 4.32

Pinterest 6.5.0 Social 100 M 4.57

Spotify Music 7.0.0.1369 Music & Audio 100 M 4.53

Twitter 6.27.1 News & Magazines 500 M 4.23

Waze 4.17.0.0 Maps & Navigation 100 M 4.56

Whatsapp 2.16.396 Communication 1000 M 4.42

Youtube 11.47.57 Video Players & Editors 1000 M 4.18

TABLE 8 DOC GUI failures found on top
Google Play apps

App Detected DOC GUI failures

App Lock 2

Dropbox 7

Duolingo 11

Gmail 4

Pinterest 31

Spotify Music 12

Twitter 11

Waze 45

WhatsApp 3

Youtube 14

Total 140

5.3 DOC GUI failures validation

The DOC GUI failures found in the previous step were manually analyzed by a PhD student to remove the duplicate ones. Then we reported the

unique failures to the Android customer support team offered by each app provider. In this case, we did not have direct contact with the app devel-

opers so we had to interpret and answer the emails autogenerated by the app providers to validate the reported failures. We got a final answer only

from the Dropbox and Pinterest support teams; both of them accepted our issues as failures.

Therefore, for validating the remaining DOC GUI failures, we decided to refer to the GUI Consistency Design Principle stating that, “in a GUI, the

same action should always yield the same result” [25]. According to this principle, we decided to check the app behavior exhibited after the DOC in

different points of the app, to verify whether it was inconsistent across the different parts of its GUI. If a GUI exposed a potential failure after the

DOC event, such as a missing dialog, and we did not find the same behavior on different parts of the app GUI, then we deduced that the observed

failure was a true positive, since it was a violation of the consistency principle.

Table 8 shows the DOC GUI failures we found in the analyzed apps. The data show that all the 10 apps exposed more than one failure. Overall,

140 DOC GUI failures were found.

Waze and Pinterest are the applications where we found more failures than the others.

5.4 DOC GUI failures classification

In this step, we classified the failures in terms of their mode and scope according to the proposed classification framework. Table 9 reports for each

app the number of occurrences of the failure types they exposed.

On the other hand, for each type of DOC GUI failure, we evaluated how many times it occurred and the number of applications that exposed it.

Table 10 shows the results of the classification. The results we obtained in this study are very similar to the ones of the former study; the Missing

and Wrong mode failures were the most common types even in the most popular apps with 76 and 63 occurrences, respectively. Analogously, as for

22 of 27 AMALFITANO ET AL.

TABLE 9 Distribution of the DOC GUI failures found on the Google Play apps

App Failure mode Failure scope Occurrences

App Lock Missing Action Overflow Menu 2

Dropbox Wrong ListView 1

Missing Modal Bottom Sheet 4

Missing Action Overflow Menu 2

Duolingo Wrong List View 3

Wrong Radio Button 1

Wrong Spinner 1

Missing Dialog 5

Missing Popup Menu 1

Gmail Wrong ListView 1

Missing Action Overflow Menu 2

Missing Context Menu 1

Pinterest Wrong ListView 1

Extra Tooltip 1

Wrong Dialog 1

Wrong Edit Text 8

Wrong GridView 1

Wrong RecyclerView 7

Wrong Spinner 1

Wrong Switch 2

Wrong Text View 3

Missing Dialog 3

Missing Image View 1

Missing Text View 1

Missing Sliding Up Panel 1

Spotify Missing Context Menu 5

Missing Action Overflow Menu 1

Wrong ListView 3

Wrong View Pager 1

Wrong Spinner 1

Wrong Web View 1

Twitter Wrong Search Widget 2

Missing Text View 1

Missing Action Overflow Menu 5

Missing Context Menu 1

Wrong Spinner 1

Missing Side Drawer 1

Waze Missing Modal Bottom Sheet 1

Wrong ImageView 1

Wrong List View 4

Wrong Scroll View 7

Wrong Time Picker 1

Wrong Web View 3

Missing Dialog 25

Missing Modal Bottom Sheet 2

Missing Time Picker Dialog 1

Whatsapp Wrong ScrollView 1

Wrong ListView 1

Wrong Image View 1

Youtube Missing Popup Menu 6

Missing Dialog 4

Wrong List View 3

Wrong Spinner 1

the involved object types, Dialogs, ListViews, ScrollViews, and TextViews were the most frequent ones. Details about the second dataset and the

detected GUI failures have been made publicly available.*** We report for each app, its analyzed version, its Google Play Category, the failure types

it exposed along with their occurrences, and a sequence of events able to trigger a specific failure type.

*** https://docs.google.com/spreadsheets/d/1xhOudp3FBJq4MTHeRK4LWeqwRA9s&uscore;ltuh6PwkaIi-ZA/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1xhOudp3FBJq4MTHeRK4LWeqwRA9s&uscore;ltuh6PwkaIi-ZA/edit?usp=sharing

AMALFITANO ET AL. 23 of 27

TABLE 10 Classification of the DOC GUI failures found on the Google Play applications

Failure mode Failure scope No. of occurrences No. of involved apps

Missing Dialog 37 4

Action Overflow Menu 12 5

Context Menu 7 3

Modal Bottom Sheet 7 3

Popup Menu 7 2

Text View 2 2

Image View 1 1

List View 1 1

Sliding Up Panel 1 1

Time Picker 1 1

Wrong ListView 17 8

ScrollView 8 2

EditText 8 1

Recycler View 7 1

Spinner 5 5

Web View 4 2

Text View 3 1

Image View 2 2

Search Widget 2 1

Switch 2 1

Dialog 1 1

Grid View 1 1

Radio Button 1 1

Time Picker 1 1

View Pager 1 1

Extra Tooltip 1 1

5.5 Study conclusion

This second study obtained results very similar to the ones achieved by the former study.

As to the first goal G1, the experimental results confirmed that GUI failures due to orientation change are very frequent even in Android apps

that are distributed through the official Android app market. As a consequence, we could conclude that this problem is widespread in the field of

Android apps and impact both mature and less mature applications.

Regarding the goal G2, the study indicated that Missing and Wrong are the most common DOC GUI failure modes also for the most popular

Android applications. Considering the scope of the detected GUI failures, we can see that there are some types of GUI objects that occurred more

frequently than others; more precisely, Dialogs, ListViews, ScrollViews, and TextViews are the most involved types of GUI objects even among the

most popular apps of the official Android market.

6 THREATS TO VALIDITY

This section discusses the threats that could affect the validity of the results obtained in Study 1 and Study 2.

Construct Validity: This aspect of validity reflects to what extent the operational measures that are studied really represent what the researcher

has in mind and what is investigated according to the research question [26]. In our studies, since we did not have access to the requirements of

each app, there was the risk that the GUI failures we detected could not be actual failures, but the manifestation of apps' expected behavior. This

may be a possible threat to the construct validity of our studies. We mitigated this threat by exploiting GUI failures validation procedures. In the

first study, we relied on the developers' feedback. We opened a issue for each potential GUI failure and considered it a failure only when the app

developers accepted that issue. This procedure makes us confident that all the GUI failures reported in the first study were actually failures. In the

second study, we used the violation of the UI Consistency Design Principle for validating the detected GUI failures. Although this procedure does

not definitely assure us that what we observed were aberrant app behaviors, it gives us additional evidence to assume it.

Internal Validity: This aspect of validity assesses that there are no uncontrolled variables of the experiment that had an effect on the outcome [26].

Such threats typically do not affect exploratory studies like the ones reported in this paper [27].

However, we cannot exclude con-causes besides DOC events that triggered the GUI failures we observed, eg, the execution platform or the timing

between consecutive events. A controlled experiment involving different Android OS versions, types of device, and time intervals between events

should be performed to further investigate this aspect.

External validity: This aspect of validity is concerned with to what extent it is possible to generalize the findings to other contexts [26]. A possible

threat to the generalizability of our experimental results could be the representativeness of the sample of Android apps.

24 of 27 AMALFITANO ET AL.

In Study 1, we mitigated this threat by randomly selecting 68 open-source apps that had the orientation change enabled, active developers, and

a issue tracker.

We did not limit our analysis to the open-source world and confirmed and strengthened our findings by considering industrial-strength apps in

Study 2. In this second study, we randomly selected 10 apps from the official Google app market that allowed the orientation change, had more than

50 M installs, and had an average rating above 4 stars.

We cannot claim that our results generalize beyond the inclusion criteria we applied. Moreover, we cannot exclude that specific characteristics

of the apps we analyzed (such as the types of GUI widget they rely on, or their category) may have influenced our experimental results. To further

extend the validity of our study, a controlled experiment involving a larger set of apps with selected characteristics should be performed.

7 RELATED WORK

In this paper, we explored GUI failures in Android apps triggered by the orientation change mobile-specific event and analyzed source code bugs

that cause them. There are many works in the literature that address event-based testing and mobile fault classification. Here, we discuss some of

the most related ones.

7.1 Event-based mobile testing

Since mobile apps are event-driven systems, their behavior can be verified through inputs consisting in specific event sequences as stated by Belli

et al [28].

Several event-based testing techniques have been proposed in the literature to test mobile apps. These techniques span from random testing

(eg, Machiry et al [22], Hu et al [29], Amalfitano et al [30]) to symbolic-execution–based test-case generation (eg, Anand et al [31], Mirzaei et al

[32]), ripping-based testing (eg, Amalfitano et al [33], Azim et al [34], Choi et al [35]), pattern-based testing (eg, Cunha et al [36], Moreira et al [37]),

model-based testing (eg, Amalfitano et al [4], Nabuco et al [38]), and combinations of model-based and combinatorial testing (eg, Jensen et al [39],

Nguyen et al [40]). Unlike our work, the main goal of most of these techniques is to maximize the code coverage or to find crashes in the apps under

test. Other works instead aim at assessing specific quality aspects of mobile applications [3], such as performance [5], security [6, 7], responsiveness

[8], and energy consumption [9].

7.2 Testing apps through mobile specific events

Some recent works address the problem of testing a mobile application by mobile-specific events.

The work of Zaeem et al [15] is based on the intuition that different mobile apps and platforms share a set of features referred to as

User-Interaction Features and that there is a general, common sense of expectation of how the application should respond to a given feature.

It proposes a technique for testing and generating oracles focusing on a subset of features, ie, Double rotation, Killing and Restarting, Pausing and

Resuming, and Back button. They presentQUANTUM, a framework that automatically generates a test suite to test the user-interaction features of a

given app leveraging application agnostic test oracles. QUANTUM requires a user-generated GUI model of the app under test as input and provides

as output a JUnit-Robotium test suite that exercises interaction features. Their initial experimentation ofQUANTUMexposed a total of 22 real failures

in 6 open-source Android apps, including 12 GUI failures due to orientation change.

Adamsen et al [12] aim to improve the quality of apps by testing them under adverse conditions. They propose a technique and a tool namedTHOR

that amplifies existing test cases injecting “neutral” event sequences that should not affect the functionality of the app under test and the output of

the original test case. They focus on event sequences that are usually neglected in traditional testing approaches, including DOC events. Moreover,

they provide a classification of the failures and bugs that their technique is able to find. Among the 4 categories proposed in their classification,

there are failures related to the GUI, ie, Unexpected Screen and Element disappears, that are similar to the ones we dealt with. They performed

an experiment involving 4 real Android apps and the results showed that THOR was able to detect 66 distinct problems, most of which are due to

the events that cause a transition of the activity through the states Pause-Stop-Destroy-Create such as orientation change. Most of the failures

detected by THOR belong to GUI category.The results achieved both by Zaeem et al [15] and Adamsen et al [12] gave us a hint about the relevance of

the problem addressed in our paper, since several failures discovered by their techniques were GUI-related and exposed by the orientation change.

While these works focused only on failure detection and classification, we also investigated the faults that cause a relevant part of these failures.

7.3 Android-specific fault classification

Several works in the literature aimed at defining Android-specific fault classes.

One of the first attempts at classifying Android faults is due to Hu and Neamtiu [29]. The authors proposed 8 types of bug by analyzing the

faults they found in 10 open-source Android apps. Their fault classification is based on bug report analysis, whereas we abstract our Android fault

classes by analyzing the causes of GUI failures we observed by testing 68 real apps. Moreover, their fault categories are described at a high level of

AMALFITANO ET AL. 25 of 27

abstraction and are not supplemented by code-related information. Instead, we provide a more structured description of each class of fault, made

of 7 characteristics that also contains the Android app component where the fault may be detected and a possible code fix.

Shan, Azim, and Neamtiu [14] focused on a specific fault class because of the incorrect handling of the data that should be preserved when an app

is resumed or restarted. They named KR errors the failures caused by these faults. These authors proposed a technique for finding KR errors and

performed an experiment where they found 49 KR errors in 37 real Android apps. Most of these errors manifested themselves on the GUI, similarly

to the GUI failures we dealt within this paper. But, unlike our work that distinguishes among different types of GUI failures, their paper generically

classifies them as KR errors.

Banerjee et al [41, 42] focused on another type of problem in Android apps, ie, abnormal energy consumption, called energy hotspots. These

authors proposed an automated test generation framework aimed at detecting energy hotspots. Like us, they also explored the causes of these

failures in the Android app code and defined 4 fault classes (Resource Leak, Wakelock Bug, Vacuous Background Services, and Immortality Bug),

each one corresponding to a different energy hotspot category. Similarly to our work, they propose a structured description of each defect type

made of Affected components, Defect pattern, Patch suggestion, and a Real-world example.

Deng et al [17, 43] also dealt with Android bugs but with the different aim of defining novel operators to mutate the source code of Android apps.

Part of their operators are designed on the basis of unique technical features of the Android framework. Another part is based on common faults in

real apps obtained by investigating bug reports and code change history logs on Github repositories. Our work instead introduces 6 classes of faults

discovered by testing real Android apps rather than by mining bug tracking repositories. Most of the considered bugs were not already present in

issue trackers since we focused on problems often overlooked by developers and testers. The work of these authors shares one piece of common

ground with us, since they designed a specific operator to force testing of orientation changes. Our work focused on this specific issue and provided

a comprehensive analysis that spans from GUI failures to code faults.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of GUI failures in Android mobile applications that are caused by the screen orientation changes. We

proposed a classification of these failures based on 2 attributes called scope and mode.

To investigate the impact of these failures in the context of Android, we performed 2 exploratory studies that involved both open-source apps and

apps distributed by the official Android Google Play market. The studies exploited amplification-based black-box testing techniques for analyzing

78 apps. The results showed that more than 88% of analyzed apps were affected by these failures, highlighting that this problem is widespread in

the context of Android mobile apps. Our study is the first one to point out the relevance of this issue in mobile apps context.

Almost all the failures detected by our study were novel and not already present in issue trackers. We make available the set of collected GUI

failures as open source since it provides the largest currently available dataset of this kind of failures. It may be exploited to evaluate and compare

the effectiveness of different testing techniques and tools.

The study also showed that some failure modes were more frequent than others and some GUI object types were more frequently involved. This

suggests that developers should be aware and more careful about specific features of the Android framework. The management of some GUI object

types may be critical and error-prone in Android app code because of deficiencies in Android framework and its documentation. However, we cannot

exclude that we found more failures of certain types because the GUIs of the considered apps mostly used these objects. A controlled study would

be necessary to verify this hypothesis. The study also highlighted 3 types of failures that were more common than others among mobile apps and

provided us a relevant sample of failure instances of these types. We analyzed the source code of the apps affected by these failures and discovered

6 classes of common faults that cause them. These classes abstract common errors that should be avoided by developers to improve the app quality

and to ensure better user experience.

In future work, we plan to exploit these Android-specific fault classes to develop new mutation operators for testing of Android apps and to define

fault localization techniques focused on source code bugs that may cause the observed failures.

Our work targeted GUI failures triggered by the orientation change event. In the future, we will consider other mobile-specific events, which may

cause GUI failures, such as Receiving a Call, Sending an application in Background, and Pressing the Back button of the device.The paper addressed

GUI failures in the context of Android. However, according to the results of our preliminary investigation, we are aware that the problem affects

other mobile platforms. Thus, we plan to extend this work by considering other mobile operating systems, such as iOS and Windows10.

ORCID

Anna Rita Fasolino http://orcid.org/0000-0001-7116-019X

REFERENCES

1. Statista, Number of smartphone users worldwide from 2014 to 2019 (in millions), 2016. https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/.

2. Statista, Number of apps available in leading app stores as of June 2016, 2016. http://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/.

http://orcid.org/0000-0001-7116-019X
http://orcid.org/0000-0001-7116-019X
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

26 of 27 AMALFITANO ET AL.

3. S. Zein, N. Salleh, and J. Grundy, A systematic mapping study of mobile application testing techniques, J. Syst. Softw. 117 (2016), no. C, 334–356. https://doi.
org/10.1016/j.jss.2016.03.065.

4. D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon, Mobiguitar: Automated model-based testing of mobile apps, IEEE Softw. 32 (2015),
no. 5, 53–59.

5. G. Canfora, F. Mercaldo, C. A. Visaggio, M. DAngelo, A. Furno, and C. Manganelli, in A case study of automating user experience-oriented performance
testing on smartphones, 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, 2013, pp. 66–69.

6. A. Avancini and M. Ceccato, in Security testing of the communication among Android applications, 2013 8th International Workshop on Automation of
Software Test (AST), IEEE Press, San Francisco, California, 2013, pp. 57–63. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6595792.

7. G. Canfora, F. Mercaldo, and C. A. Visaggio, An HMM and structural entropy based detector for android malware: An empirical study, Comput. Secur. 61 (2016),
1–18. https://doi.org/10.1016/j.cose.2016.04.009.

8. S. Yang, D. Yan, and A. Rountev, in Testing for poor responsiveness in android applications, 2013 1st International Workshop on the Engineering of
Mobile-Enabled Systems (MOBS), IEEE Computer Society. Washington, DC, 2013, pp. 1–6.

9. M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. Di Penta, and D. Poshyvanyk, in Optimizing energy consumption of guis in android apps:
A multi-objective approach, Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, ACM, New York, NY,
USA, 2015, pp. 143–154. http://doi.org/10.1145/2786805.2786847.

10. D. Amalfitano, N. Amatucci, A. M. Memon, P. Tramontana, and A. R. Fasolino, A general framework for comparing automatic testing techniques of android mobile
apps, J. Syst. Softw. 125 (2017), 322–343. https://doi.org/10.1016/j.jss.2016.12.017.

11. H. Muccini, A. di Francesco, and P. Esposito, in Software testing of mobile applications: Challenges and future research directions, 2012 7th Inter-
national Workshop on Automation of Software Test (AST), IEEE, Zurich, Switzerland, 2012, pp. 29–35. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=6228987.

12. C. Q. Adamsen, G. Mezzetti, and A. Møller, in Systematic execution of Android test suites in adverse conditions, Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA 2015), ACM, Baltimore, MD, USA, 2015, pp. 83–93. http://doi.org/10.1145/2771783.2771786.

13. K. Moran, M. Linares-VÃ ¸asquez, C. Bernal-CÃ ¸ardenas, C. Vendome, and D. Poshyvanyk, in Automatically discovering, reporting and reproducing android
application crashes, 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST), IEEE Computer Society. Washington,
DC, 2016, pp. 33–44.

14. Z. Shan, T. Azim, and I. Neamtiu, in Finding resume and restart errors in android applications, Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, october 30 - november 4,
2016, Amsterdam, the Netherlands, 2016, pp. 864–880. http://doi.org/10.1145/2983990.2984011.

15. R. N. Zaeem, M. R. Prasad, and S. Khurshid, in Automated generation of oracles for testing user-interaction features of mobile apps, Proceedings of the
2014 IEEE International Conference on Software Testing, Verification, and Validation, ICST '14, IEEE Computer Society, Washington, DC, USA, 2014, pp.
183–192. https://doi.org/10.1109/ICST.2014.31.

16. V. Lelli, A. Blouin, and B. Baudry, in Classifying and qualifying gui defects, 2015 IEEE 8th International Conference on Software Testing, Verification and
Validation (icst), IEEE Computer Society. Washington, DC, 2015, pp. 1–10.

17. L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, Mutation operators for testing android apps, Inf. Softw. Technol. 81 (2017), 154–168. https://doi.org/10.1016/
j.infsof.2016.04.012.

18. Google Android, Android—What to test, 2015. http://goo.gl/AL22tJ.

19. Ieee standard classification for software anomalies, IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993), IEEE Computer Society. Washington, DC,
2010, pp. 1–23. https://doi.org/10.1109/IEEESTD.2010.5399061

20. K. Holl and F. Elberzhager, in Mobile application quality assurance: Reading scenarios as inspection and testing support, 2016 42th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Vol. 00, IEEE Computer Society. Washington, DC, 2016, pp. 245–249.

21. S. R. Choudhary, A. Gorla, and A. Orso, in Automated test input generation for android: Are we there yet? (E), 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, November 9-13, 2015, Lincoln, NE, USA, 2015, pp. 429–440. https://doi.org/10.1109/ASE.2015.89.

22. A. Machiry, R. Tahiliani, and M. Naik, in Dynodroid: An input generation system for android apps, Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, ACM, New York, NY, USA, 2013, pp. 224–234. http://doi.org/10.1145/2491411.2491450.

23. K. Mao, M. Harman, and Y. Jia, in Sapienz: Multi-objective automated testing for android applications, Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, ACM, New York, NY, USA, 2016, pp. 94–105. http://doi.org/10.1145/2931037.2931054.

24. P. Zhang and S. G. Elbaum, Amplifying tests to validate exception handling code: An extended study in the mobile application domain, ACM Trans. Softw. Eng.
Methodol. 23 (2014), no. 4, 32:1–32:28. http://doi.org/10.1145/2652483.

25. D. A. Norman, The Design of Everyday Things, Basic Books, Inc., New York, NY, USA, 2002.

26. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell, Experimentation in Software Engineering, Springer:Berlin, Heidelberg, 2012. https://doi.org/
10.1007/978-3-642-29044-2.

27. R. K. Yin, Case Study Research: Design and Methods, Applied Social Research Methods, SAGE Publications:Thousand Oaks, California, 2009. https://books.
google.it/books?id=FzawIAdilHkC.

28. F. Belli, M. Beyazit, and A. Memon, in Testing is an event-centric activity, 2012 IEEE Sixth International Conference on Software Security and Reliability
Companion (SERE-C), IEEE Computer Society. Washington, DC, 2012, pp. 198–206.

29. C. Hu and I. Neamtiu, in Automating gui testing for android applications, Proceedings of the 6th International Workshop on Automation of Software Test,
AST '11, ACM, New York, NY, USA, 2011, pp. 77–83. http://doi.org/10.1145/1982595.1982612.

30. D. Amalfitano, N. Amatucci, A. R. Fasolino, P. Tramontana, E. Kowalczyk, and A. M. Memon, in Exploiting the saturation effect in automatic random testing
of android applications, 2nd ACM International Conference on Mobile Software Engineering and Systems, Mobilesoft 2015, May 16-17, 2015, Florence,
italy, 2015, pp. 33–43. https://doi.org/10.1109/MobileSoft.2015.11.

31. S. Anand, M. Naik, M. J. Harrold, and H. Yang, in Automated concolic testing of smartphone apps, Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE '12, ACM, New York, NY, USA, 2012, pp. 59:1–59:11. http://doi.org/10.1145/2393596.
2393666.

https://doi.org/10.1016/j.jss.2016.03.065
https://doi.org/10.1016/j.jss.2016.03.065
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6595792
https://doi.org/10.1016/j.cose.2016.04.009
http://doi.org/10.1145/2786805.2786847
https://doi.org/10.1016/j.jss.2016.12.017
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6228987
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6228987
http://doi.org/10.1145/2771783.2771786
http://doi.org/10.1145/2983990.2984011
https://doi.org/10.1109/ICST.2014.31
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1016/j.infsof.2016.04.012
http://goo.gl/AL22tJ
https://doi.org/10.1109/IEEESTD.2010.5399061
https://doi.org/10.1109/ASE.2015.89
http://doi.org/10.1145/2491411.2491450
http://doi.org/10.1145/2931037.2931054
http://doi.org/10.1145/2652483
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://books.google.it/books?id=FzawIAdilHkC
https://books.google.it/books?id=FzawIAdilHkC
http://doi.org/10.1145/1982595.1982612
https://doi.org/10.1109/MobileSoft.2015.11
http://doi.org/10.1145/2393596.2393666
http://doi.org/10.1145/2393596.2393666

AMALFITANO ET AL. 27 of 27

32. N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood, Testing android apps through symbolic execution, SIGSOFT Softw. Eng. Notes 37 (2012),
no. 6, 1–5. http://doi.org/10.1145/2382756.2382798.

33. D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and A. M. Memon, in Using GUI ripping for automated testing of android applications,
IEEE/ACM International Conference on Automated Software Engineering, ASE'12, September 3-7, 2012, Essen, Germany, 2012, pp. 258–261. http://doi.
org/10.1145/2351676.2351717.

34. T. Azim and I. Neamtiu, Targeted and depth-first exploration for systematic testing of android apps, SIGPLAN Not. 48 (2013), no. 10, 641–660. http://doi.org/
10.1145/2544173.2509549.

35. W. Choi, G. Necula, and K. Sen, in Guided gui testing of android apps with minimal restart and approximate learning, Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA '13, ACM, New York, NY, USA,
2013, pp. 623–640. http://doi.org/10.1145/2509136.2509552.

36. M. Cunha, A. C. R. Paiva, H. S. Ferreira, and R. Abreu, in PETTool: A pattern-based GUI testing tool, 2010 2nd International Conference on Software Tech-
nology and Engineering (ICSTE), Vol. 1, IEEE, San Juan, PR, 2010, pp. V1–202 –VI–206. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5608882.

37. RMLM Moreira, A. C. R. Paiva, and A. Memon, in A pattern-based approach for GUI modeling and testing, IEEE 24th International Symposium on Software
Reliability Engineering, ISSRE 2013, november 4-7, 2013, Pasadena, CA, USA, 2013, pp. 288–297. https://doi.org/10.1109/ISSRE.2013.6698881.

38. M. Nabuco and A. C. R. Paiva, in Model-based test case generation for Web applications, 14th International Conference on Computational Science and
Applications (ICCSA 2014), Springer International Publishing: Cham, Switzerland, 2014.

39. C. S. Jensen, M. R. Prasad, and A. Møller, in Automated testing with targeted event sequence generation, Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ISSTA 2013, ACM, New York, NY, USA, 2013, pp. 67–77. http://doi.org/10.1145/2483760.2483777.

40. C. D. Nguyen, A. Marchetto, and P. Tonella, in Combining model-based and combinatorial testing for effective test case generation, Proceedings of the
2012 International Symposium on Software Testing and Analysis, ISSTA 2012, ACM, New York, NY, USA, 2012, pp. 100–110. http://doi.org/10.1145/
2338965.2336765.

41. A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury, Energypatch: Repairing resource leaks to improve energy-efficiency of android apps, IEEE Trans.
Softw. Eng. PP (2017), no. 99, 1–1.

42. A. Banerjee, H. Guo, and A. Roychoudhury, in Debugging energy-efficiency related field failures in mobile apps, Proceedings of the International Confer-
ence on Mobile Software Engineering and Systems, MOBILEsoft '16, May 14-22, 2016, Austin, Texas, Usa, 2016, pp. 127–138. http://doi.org/10.1145/
2897073.2897085.

43. L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, in Towards mutation analysis of android apps, 10th International Workshop on Mutation Analysis (Mutation
2015) Co-Located with IEEE EIGHTH International Conference on Software Testing, Verification and Validation (ICST 2015), IEEE Computer Society.
Washington, DC, 2015, pp. 1–10.

How to cite this article: Amalfitano D, Riccio V, Paiva ACR, Fasolino AR. Why does the orientation change mess up my Android applica-

tion? From GUI failures to code faults.. Softw Test Verif Reliab. 2018;28:e1654. https://doi.org/10.1002/stvr.1654

http://doi.org/10.1145/2382756.2382798
http://doi.org/10.1145/2351676.2351717
http://doi.org/10.1145/2351676.2351717
http://doi.org/10.1145/2544173.2509549
http://doi.org/10.1145/2544173.2509549
http://doi.org/10.1145/2509136.2509552
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5608882
https://doi.org/10.1109/ISSRE.2013.6698881
http://doi.org/10.1145/2483760.2483777
http://doi.org/10.1145/2338965.2336765
http://doi.org/10.1145/2338965.2336765
http://doi.org/10.1145/2897073.2897085
http://doi.org/10.1145/2897073.2897085
https://doi.org/10.1002/stvr.1654

	Why does the orientation change mess up my Android application? From GUI failures to code faults
	Abstract
	INTRODUCTION
	MOTIVATING EXAMPLES
	THE DOC GUI FAILURE CLASSIFICATION FRAMEWORK
	GUI Objects
	GUI state and state transition
	Equivalence and similarity between GUI objects
	DOC GUI Failures

	EXPLORATORY STUDY 1
	Objects selection
	Apps testing
	DOC GUI failure validation
	DOC GUI failure classification
	Common faults identification
	Show method called on Dialog or its Builder
	Fragment created twice on Activity restart
	Missing Id in XML layout
	Aged target SDK version
	List adapter not set in onCreate method
	List filled through background thread
	Common faults summary

	Study conclusion

	EXPLORATORY STUDY 2
	Objects selection
	Apps testing
	DOC GUI failures validation
	DOC GUI failures classification
	Study conclusion

	THREATS TO VALIDITY
	RELATED WORK
	Event-based mobile testing
	Testing apps through mobile specific events
	Android-specific fault classification

	CONCLUSIONS AND FUTURE WORK
	References

