
Comparing model coverage and code coverage in
Model Driven Testing: an exploratory study

Domenico Amalfitano∗, Vincenzo De Simone∗, Anna Rita Fasolino∗, Vincenzo Riccio†
∗Department of Electrical Engineering and Information Technologies

University of Naples Federico II
Via Claudio 21, Naples, Italy

Email: {domenico.amalfitano, vincenzo.desimone2, fasolino}@unina.it
†CeRICT - Centro Regionale Information and Communication Technology

Complesso Universitario di Monte Sant’Angelo - Fabbricato 8b,
Via Cintia, Naples, Italy

Email: vin.riccio@gmail.com

Abstract—The Model Driven Architecture (MDA) approach is
emerged in the last years as a novel software design methodology
for the development of software systems. In this approach the
focus of software development is shifted from writing code
to modeling. In MDA, developers implement models that are
automatically transformed into the target code of the system.
Alongside MDA, the Model Driven Testing (MDT) is emerging
as a relevant research topic in both industrial and scientific
communities. MDT is a methodology where test cases for the
system are automatically obtained starting from test models to
maximize specific model coverage criteria. Eventually, test cases
are executed to verify the system code that is generated through
an MDA approach. In this paper, we conduct an exploratory
study in order to evaluate the differences that may exist between
the model coverage guaranteed by the test cases and the code
coverage reached when they are executed on the auto-generated
code. Moreover, we identify the main factors that may influence
these differences.

I. INTRODUCTION

Nowadays software industries are required to develop more
and more complex software systems, while respecting shorter
and shorter delivery schedules. At the same time these systems
are required to satisfy strict quality attributes of safety and
security. These trends motivated the request for finding more
effective and alternative solutions for software system design,
development and testing.

In the last years Model-Driven Engineering (MDE) has
emerged as a promising approach for developing software
systems that gives particular emphasis on models and auto-
mated code generation. The basic difference between MDE
and more traditional software development approach is that
MDE exploits models to automatically generate the specified
software system. MDE is based on (1) domain-specific model-
ing languages and (2) transformation engines and generators
[1]. Domain-specific modeling languages are exploited for
formalizing the software structure, behavior, and requirements
within particular domains, such as software-defined radios,
avionics mission computing, automotive safety software, on-
line financial services, warehouse management, or even the
domain of middleware platforms. Transformation engines and
generators analyze certain aspects of the models and then gen-
erate various types of artifacts, such as source code, simulation

inputs, XML deployment descriptions, or alternative model
representations. Currently a dominant approach in MDE is the
Model Driven Architecture (MDA)1, an initiative of the Object
Management Group (OMG) that exploits OMG UML models
in the development process.

The same emphasis on modeling that underlies MDA can
be found in Model Driven Testing (MDT) too [2]. In MDT,
test cases that exercise the code of the system under test are
automatically obtained starting from test models. They are
usually generated by techniques aimed at reaching an adequate
coverage of the test model elements. However, even if test
cases adequately cover the test models, it is not true that
they will be sufficient to reach an adequate coverage of the
system code, too. Investigating the relationship between model
coverage and code coverage of test suites obtained by a MDT
approach is hence a relevant research topic. Although this
problem was addressed in other model driven approaches like
the Model Based Development (MBD) one [3], it has not been
sufficiently investigated in the MDA context. In this paper,
we are interested to explore this relationship in the context of
MDA approaches. In particular, we intend to study an MDT
approach that exploits UML StateMachines both to specify the
software system and to define the test model.

The rest of the paper is organized as follows in Section
II a background about model driven approaches is reported.
Section III describes the exploratory study we performed and
Section IV summarizes the findings of the study. Eventually,
Section V reports conclusions and future works.

II. MODEL DRIVEN TESTING BACKGROUND

The OMG’s Model Driven Architecture, MDA, initiative
shifts the focus of software development from writing code to
modeling [4].

MDA distinguishes three different models. The first one
is the Computation Independent Model or CIM describing
the business system. The second model is the Platform In-
dependent Model, PIM, that is a view of a system from
a platform independent point of view. The last one is the
Platform Specific Model, a.k.a. PSM, a view of a system that

1http://www.omg.org/mda/



combines the specifications of the PIM with the details that
specify how that system uses a particular type of platform [5].
The MDA specification [6] uses the term platform to intend
not only a specific operating system but also a language-
based platform such as Java or Python, and even common
development practices such as the creation of accessor methods
for class attributes [4].

MDA has introduced the notion of automatic transforma-
tion, that is one of its key features. A transformation describes
how a model defined in a source language (source model) can
be transformed into one or more models in a target language
(target model). As shown in the left side of Fig. 1, in an
MDA approach two consecutive transformations are employed.
First, the platform independent models are transformed into
platform specific models containing a lot of information about
the underlying platform. In a subsequent transformation step,
system code may be derived from the PSM.

Within the same MDA initiative, the Model Driven Testing
(MDT) approach for software testing has been also proposed.
MDT applies to test modeling the same philosophy followed
by MDA in system modeling, as it is shown in the right side
Fig. 1. The platform independent test design model (PIT) can
be obtained from the system design model defined at the PIM
level [7]. It can be transformed into platform specific test
design models (PSTs). PSTs may also be directly derived from
the PSM models. At last, starting from the PST, the test design
models can be transformed into executable test code [2].

Fig. 1. Model Driven Architecture and Model Driven Testing

UML models play a fundamental role in Model Driven
Architecture approaches and they are widely used for defining,
at different levels, both static and dynamic aspects of the
system. Among all the possible diagrams, we will focus on
the finite state machine (FSM) ones (represented by UML
StateMachine models), since they are appropriate to specify
the behavior of event-driven systems, including Graphical User
Interfaces (GUIs) and control systems. FSM are widely used as
a basis for test generation and/or coverage analysis if they are
specified with appropriate detail and rigor [8]. If we consider
the MDA approach shown in 1 and we implement it using
FSM models, the finite state machine at the PSM level will be
transformed into a state machine at the PST level. The FSM
at the PSM level will be in turn automatically transformed

into a part of the source code of the whole system. If we
switch to the MDT testing approach, we will have that the
state machine at the PIT level will be transformed into the
PST model and then the PST transformation will return the test
code that exercises the generated source code of the system.
Usually, the transformations from state machines at PST level
towards test code are designed to guarantee that specific model
coverage criteria are met, such as the coverage of all states,
all transitions, all paths and so on [9].

III. EXPLORATORY STUDY

In this section we present the exploratory study we per-
formed for evaluating the differences that may exist between
model and code coverage testing adequacy achieved by a test
suite generated according to an MDT approach. More in detail,
the study aimed at understanding:

• which levels of code coverage testing adequacy can
be reached by a test suite generated to guarantee a
specific model coverage testing adequacy?

• what are the factors that may cause the differences
between code coverage and model coverage testing
adequacy?

A. Study Process Description

The process we followed for conducting the study is shown
in Fig. 2.

Fig. 2. Experimental Process

According to the MDA approach, in the Code Genera-
tion step, a UML StateMachine model [10] at PSM level is
automatically translated into source code. On the other side,
following the MDT approach, the PSM model is transformed
into the corresponding UML StateMachine model at PST level
by executing the Test Model Generation step. In the Test
Generation step, the UML StateMachine model at PST level
is used to automatically produce test suites able to meet a set
of test adequacy criteria defined at model level. Furthermore,



this step generates output reports providing the model coverage
reached by each test suite. In the Test Execution step, each
test suite is used to test the auto-generated code. Before this
step, the code must be instrumented to allow the evaluation
of the test adequacy at code level. The output of this step
is a report providing the code coverage testing adequacy
obtained by exercising the auto-generated code by each test
suite. Eventually, the Comparison Analysis step is executed
for evaluating the differences between the model coverage and
code coverage obtained by the test suites.

B. Metrics

Different metrics were exploited to conduct the study. To
evaluate the complexity of the UML StateMachine models be-
longing to the PSM level, the following metrics were adopted:

• #States: it represents the overall number of states of
the model

• #Transitions: it represents the overall number of
transitions of the model

• AACC: it is the Average Action Cyclomatic Com-
plexity. It is defined as the ratio between the sum of
the cyclomatic complexity of all the actions of the
model and the overall number of actions.

We proposed the latter metric for taking into account the differ-
ent styles adopted by practitioners to design UML StateMa-
chine diagrams. In the PSM model indeed it is possible to
specify part of the system logic even by directly writing the
code associated with an action.

For evaluating the model coverage reached by a test suite
we exploited the following metrics:

• CS%: it is the percentage of covered states

• CT%: it is the percentage of covered transitions

Eventually, for measuring the code coverage obtained by a
test suite we considered the metrics reported below:

• CSTM%: it is the percentage of covered statements

• CB%: it is the percentage of covered branches

C. Study Process Execution

As objects of the study we considered four different UML
StateMachine models at the PSM level, named SM1, SM2,
SM3 and SM4, having the complexity reported in Table
I. These models describe the behavior of two simple real-
world systems i.e., a garage management system (SM1 and
SM2) and an order management system (SM3 and SM4).
The process was executed four times, each time considering
just one of these models.

TABLE I. MODELS COMPLEXITY METRICS

Metrics SM1 SM2 SM3 SM4

#States 4 4 8 8
#Transitions 9 9 12 12
AACC 1 7 1 2.67

Each model was automatically translated into the corre-
sponding Java source code (SC1, SC2, SC3 and SC4) by
exploiting the Visual Paradigm CASE tool 2.

At the same time, the models at PSM level were manually
transformed into the corresponding PST models having the
same values of complexity metrics.

Each model at PST level was automatically translated
into executable test suites exploiting the features provided by
Conformiq Designer tool 3. The test suites that were generated
had to guarantee the following test adequacy criteria:

1) TA1: it assures the coverage of all states
2) TA2: it assures the coverage of all transitions

Two test suites were automatically generated for each
model, overall eight test suites were produced. By analyzing
the Model Coverage reports, we verified that all the test suites
generated to guarantee the TA1 criterion reached a value of
CS% equal to 100%. In the same way, the remaining four test
suites produced to meet the TA2 criterion actually obtained
a CT% equal to 100%. All test suites were ran against the
auto-generated Java code previously instrumented with the
CodeCover4 tool.

The column 2 and column 3 of Table II report the results of
code coverage reached by the test suites. A detailed discussion
about the findings of these results is described in the next
Session.

TABLE II. CODE TEST ADEQUACY REACHED BY TEST SUITES

SC1

Test Suite CSTM% CB% CSTM% CB%
TestSuite(TA1) 53.1 % 25.0 % 74 % 50 %
TestSuite(TA2) 69.9 % 35.0 % 100 % 83.3 %

SC2

Test Suite CSTM% CB% CSTM% CB%
TestSuite(TA1) 54.3 % 36.7 % 72 % 57.7 %
TestSuite(TA2) 71.3 % 51.7 % 96.6 % 84.6 %

SC3

Test Suite CSTM% CB% CSTM% CB%
TestSuite(TA1) 51.3 % 29.2 % 67.8 % 42.8 %
TestSuite(TA2) 75.1 % 41.7 % 100 % 78.6 %

SC4

Test Suite CSTM% CB% CSTM% CB%
TestSuite(TA1) 48.4 % 27.3 % 62.1 % 31.2 %
TestSuite(TA2) 71.6 % 40.9 % 92.5 % 56.2 %

IV. FINDINGS

As data show all the executions of the test suites never
reached the 100% of the CSTM% neither of the CB%.
This preliminary result demonstrates that there are differences
between the model coverage and code coverage reached by
executing the test suites. In order to understand which factors
influenced these differences, we performed an analysis of

2http://www.visual-paradigm.com/
3https://www.conformiq.com/products/conformiq-designer
4http://codecover.org/



the Code Coverage reports. We observed that only a part of
auto-generated code actually implemented the behavior of the
StateMachine. The remaining code contained supporting logic
and Exception Handling. The classes that actually contained
the code related to the behavior of the StateMachines were
ControllerContext and Controller. By further an-
alyzing these classes we were able to recognize code that
allows the application to deal with unexpected events. This is
added by the Code Generator tool to guarantee the robustness
of the produced software. Moreover, the auto-generated code
contained statements related to the execution of the application
in the Debug mode. This part of the auto-generated code cannot
be covered, since the Test Generator does not take into account
these unexpected events nor the execution in Debug Mode.
We performed a further analysis where this additional code
was not considered. The obtained refined results are reported
in column 4 and column 5 of Table II. As data show, the
test suites covering all the transitions always reached 100% of
CSTM% of the code generated from models having AACC
equals to 1. The CB% values were always lower than 100%.

(a) Excerpt of SM4

(b) Event Code Coverage (c) Actions Code Coverage

Fig. 3. Code Coverage Examples

A deeper analysis showed us that test suites covering all
transitions on the model are not able to exercise all branches on
the code. As an example Fig. 3 shows an excerpt of SM4 and
the code related to the events and actions of the two transitions.
Moreover, Fig. 3(b) and Fig. 3(c) highlight the code exercised
by executing a test suite able to cover the two transitions of the
model. By analyzing the code coverage reported in Fig. 3(b),
we were able to understand that the test suite covered the (if
(ctxt.getOrderType()==1) decision but only the
TRUE branch of the if (ctxt.getOrderType()==2)
one.

Moreover, the test suites were never able to reach 100%
of both CSTM% and CB% of the code generated from
models having an AACC value greater than one. By analyzing
the Code Coverage Reports we comprehended that test suites
were able to execute all the actions but were not able to
exercise all their code. As an example, Fig. 3(c) shows that,
despite the two transitions were covered, the code related to the
confirmSpecial() action, with a cyclomatic complexity

equals to four, was not completely exercised. The code related
to the confirmRegular() action were completely covered
since it had a cyclomatic complexity value equals to one.

At the end of this exploratory study we were able to
understand that the main factors influencing differences in
model and code coverage of test cases automatically produced
in MDA-MDT approaches are (1) the tool implementing the
transformation rules from PSM towards system code, (2) the
test adequacy criteria at model level exploited for the test code
generation, and (3) the style adopted by the modeler to design
the system behavior at PSM level.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we investigated the existing differences be-
tween test adequacy at model level and code level reached
by test suites automatically generated in the context of model
driven approaches. To this aim we performed an exploratory
study that allowed us to identify this differences and to
understand the main factor influencing them.

The result of the study showed us that: (1) there are
differences between model and code coverage and (2) the three
main factors that may influence these differences.

As a future works we intend to propose a conceptual
framework for the comparison between code coverage and
model coverage in the context of model driven approaches.
Furthermore this framework will be exploited to perform
an empirical study involving a meaningful number of UML
StateMachines, adopting different PSM to code transforma-
tion rules and considering several technologies and modeling
styles.

REFERENCES

[1] D. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, Feb 2006.

[2] J. Zander, Z. Dai, I. Schieferdecker, and G. Din, “From u2tp models to
executable tests with ttcn-3 - an approach to model driven testing -,”
in Testing of Communicating Systems, ser. Lecture Notes in Computer
Science, F. Khendek and R. Dssouli, Eds. Springer Berlin Heidelberg,
2005, vol. 3502, pp. 289–303.

[3] A. Baresel, M. Conrad, S. Sadeghipour, and J. Wegener, “The Interplay
between Model Coverage and Code Coverage,” in Conference On
Computer Aided Systems Theory, 2003.

[4] T. Meservy and K. Fenstermacher, “Transforming software develop-
ment: an mda road map,” Computer, vol. 38, no. 9, pp. 52–58, Sept
2005.

[5] N. Debnath, M. Leonardi, M. Mauco, G. Montejano, and D. Riesco,
“Improving model driven architecture with requirements models,” in
Information Technology: New Generations, 2008. ITNG 2008. Fifth
International Conference on, April 2008, pp. 21–26.

[6] “MDA Specifications,” http://www.omg.org/mda/specs.htm/, 2015, [On-
line; accessed 19-July-2015].

[7] Z. R. Dai, “Model-driven testing with uml 2.0,” Computing Laboratory,
University of Kent, Tech. Rep., 2004.

[8] R. D. F. Ferreira, J. a. P. Faria, and A. C. R. Paiva, “Test coverage
analysis of uml state machines,” in Proceedings of the 2010 Third In-
ternational Conference on Software Testing, Verification, and Validation
Workshops, ser. ICSTW ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 284–289.

[9] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[10] “UML Specifications,” http://www.omg.org/spec/UML/2.5/, 2015, [On-
line; accessed 19-July-2015].


