DEEPHYPERION

EXPLORING THE FEATURE SPACE OF DEEP LEARNING BASED
SYSTEMS THROUGH ILLUMINATION SEARCH

NN A
|) \ nam ¢
oW e

VINCENZO

RICCIO
@p1ndsvin

A COLLABORATION WITH

£
=

TAHEREH ZOHDINASAB

UNIVERSITA DELLA SVIZZERA
ITALIANA, SWITZERLAND

PAOLO TONELLA

UNIVERSITA DELLA SVIZZERA
ITALIANA, SWITZERLAND

ALESSIO GAMBI

UNIVERSITY OF PASSAU,
GERMANY

DeepHyPERION: Exploring the Feature Space of Deep
Learning-Based Systems through Illumination Search

Tahereh Zohdinasab
Universita della Svizzera Italiana
Lugano, Switzerland
tahereh.zohdinasab@usi.ch

Alessio Gambi

University of Passau
Passau, Germany
alessio.gambi@uni-passau.de

ABSTRACT

Deep Learning (DL) has been successfully applied to a wide range
of application domains, including safety-critical ones. Several DL
testing approaches have been recently proposed in the literature
but none of them aims to assess how different interpretable features
of the generated inputs affect the system’s behaviour.

In this paper, we resort to Illumination Search to find the highest-
performing test cases (i.e., misbehaving and closest to misbehaving),
spread across the cells of a map representing the feature space of the
system. We introduce a methodology that guides the users of our
approach in the tasks of identifying and quantifying the dimensions
of the feature space for a given domain. We developed DEepHY-
PERION, a search-based tool for DL systems that illuminates, i.e.,
explores at large, the feature space, by providing developers with
an interpretable feature map where automatically generated inputs
are placed along with information about the exposed behaviours.

CCS CONCEPTS
« Software and its engineering — Software testing and de-

bugging.

KEYWORDS

software testing, deep learning, search based software engineering,
self-driving cars

ACM Reference Format:

Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella.
2021. DeepHyPERION: Exploring the Feature Space of Deep Learning-Based
Systems through Illumination Search. In Proceedings of the 30th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA ’21),
July 11-17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3460319.3464811

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissi m.org.

ISSTA 21, July 11-17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8459-9/21/07...$15.00
https://doi.org/10.1145/3460319.3464811

79

Vincenzo Riccio
Universita della Svizzera Italiana
Lugano, Switzerland
vincenzo.riccio@usi.ch

Paolo Tonella
Universita della Svizzera Italiana
Lugano, Switzerland
paolo.tonella@usi.ch

1 INTRODUCTION

Deep Learning (DL) has become an essential component of com-
plex software systems, including autonomous vehicles and medical
diagnosis systems. As a consequence, the problem of ensuring the
dependability of DL systems is critical.

Unlike traditional software, in which developers explicitly pro-
gram the system’s behaviour, one peculiarity of DL systems is that
they mimic the human ability to learn how to perform a task from
training examples [22]. Therefore, it is essential to understand to
what extent they can be trusted in response to the diversity of
inputs they will process once deployed in the real world, as they
could face scenarios that might be not sufficiently represented in
the data from which they have learned [13].

As discussed in the comprehensive work by Riccio et al. [26] and
by Zhang et al. [34], the Software Engineering research community
is working hard at adequately testing the functionality of DL sys-
tems by proposing a steadily growing number of approaches. Since
part of the program logic of these systems is determined by the
training data, traditional code coverage metrics are not effective
in determining whether their logic has been adequately exercised.
Therefore, recent testing solutions aim at maximising ad hoc white-
box adequacy metrics, such as neuron [12, 24, 31, 33] or surprise
coverage [15], or at exposing misbehaviours [1, 10, 35]. A limitation
of these approaches is that their output cannot be directly used to
explain the behaviour of the DL system under test, e.g. coverage
reports do not provide enough information to understand what
input features might have caused misbehaviours. Consequently, the
usefulness of these approaches for the developers is strongly lim-
ited in practice. Few approaches [2, 27] use behavioural properties
during test generation, but none of them considers the combination
of interpretable features of the DL system under test as the target of
test generation. This hinders them from exploring the feature space
at large and providing a detailed explanation on how the system
behaves for qualitatively different inputs.

In this paper, we introduce a novel way to assess the quality
of DL systems by automatically generating a large, diverse set
of high-performing (i.e., misbehaving or near-misbehaving), but
qualitatively different test inputs that provide developers with a
human-interpretable picture of the system’s quality. With our ap-
proach, developers can understand how different structural and
behavioural features of the inputs combine to affect the system’s
performance. To this aim we developed DEEPHYPERION, an open

ACM SIGSOFT INTERNATIONAL SYMPOSIUM

ON SOFTWARE TESTING AND ANALYSIS
(ISSTA) 2021

THE AGE OF DEEP LEARNING (DL)
CAN WE TRUST SOFTWARE THAT LEARNS?

Stadtverkehr

30 32

Ankunft: 15:34 Uhr

Energieleistung

Hi, how can | help?

RESEARCH SUBJECTS

345789 il
3Ygse7¢879
2456 69 § 9
Y 507 89
B34S L) ¥ Qg
34667 89
24501 8 9
MNIST BEAMNG
HAND-WRITTEN DIGIT LANE-KEEPING FOR

CLASSIFICATION AUTONOMOUS CARS

TRADITIONAL DL ASSESSMENT

TRAINING SET
- » | ACC =095
VALIDATION SET
DNN CLASSIFIER PERhFd%FTimNCE

TEST SET

HOW WILL THE DL BASED
SYSTEM BEHAVE FOR DAIA
BEYOND THE ORIGINAL

DATASET?

AUTOMATED TEST GENERATION FOR DL BASED SYSTEMS

DLFUZZ ASFAULT DEEPJANUS

ADVERSARIAL ADVERSARIAL FRONTIER OF
IMAGES ROAD NETWORKS BEHAVIOURS

Frontier 5

Validity
Domain

¢ NEED FOR A HUMAN-INTERPRETABLE
CHARACTERISATION OF THE MISBEHAVIOURS

FEATURE MAPS

Boldness

Discontinuity

FEATURE
SELECTION

FEATURE SELECTION METHODOLOGY

~ : ™
Open Coding
" Pilot Study E " Consensus | Final Labelling E
Input Database Meeting
- A
@ . > > ® C) ® —
= Al
Labelled Inputs
g D, g U D,
D,
Metrics ldentification
~ ™ ~ ™
Candidate Candu.:late ~ Metrics Validation Features
Features Metrics > > - A
. and Correlation
Design _ | — V
L) Candidate Metrics L)

Literature

Metrics

11

FEATURE SELECTION METHODOLOGY: OPEN CODING
TRAGGEM

Entity to Tag

Road G Tag e

Smoothness|[-2], Complexity[2], Orientation[-1]
Total road length = 1692 m. Cell size 20m x 20m

1,200 -

' Mark for qualitative analysis
1,100 I}
,000 — b
1,000 ¢ Add tag
q

800 — 9

900

700 o

600 —

meters

500

400 —

300

200 —

100 —

0 -

| | | | | | | | | | | | M
-700 -600 -500 -400 -300 -200 -100 O 100 200 300 400 500
meters

EXISTING TAGS e
Smoothness|], Complexity[], Orientation|}

FEATURE SELECTION METHODOLOGY: OPEN CODING

Open Coding

a N

Pilot Study

%

Labelled Inputs

Assessor 1

Boldness
Smoothness

~

v Discontinuity

13

FEATURE SELECTION METHODOLOGY: OPEN CODING

| -

v

Open Coding
. Pilot Study E " Consensus
Meeting
A
(] 8 s
Labelled Inputs q a
_ Y _ Y
.

Assessor 1

Boldness - - Boldness
Smoothness Smoothness

Discontinuity _ Discontinuity
s Rotation

14

FEATURE SELECTION METHODOLOGY: OPEN CODING

| -

v

" Pilot Study

~

Open Coding

%

Labelled Inputs

L q“a)

Consensus
Meeting

X '

" Final Labelling

Boldness
Smoothness

Discontinuity

Assessor 1

Boldness
Smoothness

Discontinuity

Rotation

15

FEATURE SELECTION METHODOLOGY: METRICS IDENTIFICATION

-~

N

Candidate
Metrics
Design

~

J

Metrics ldentification

ﬁ

Candidate Metrics

Case study

Feature Metric

Boldness Lum

Smoothness AvgAng

Discontinuity Mov

Rotation Or

16

FEATURE SELECTION METHODOLOGY: METRICS IDENTIFICATION

~ : . R
Metrics ldentification
~ ™ ~ ™
Candlqate A Metrics Validation
Metrics > > .
. and Correlation
Design _ |
9 y Candidate Metrics 9 y
_ D,

Case study Feature Metric Correlation P-value

Boldness Lum 0.67 < 0.002
Smoothness AvgAng 0.05 0.241

Discontinuity Mov 0.9 < 0.002
Rotation Or 0.43 < 0.002

FEATURE SELECTION METHODOLOGY: METRICS IDENTIFICATION

~
~ R
Candidate
Metrics
Design
_ ,
_

Metrics ldentification

ﬁ

Candidate Metrics

-~

N

» Metrics Validation

and Correlation

~

Case study

Feature Metric

Boldness Lum

Discontinuity Mov

Rotation Or

Correlation

18

AUTOMATED TEST
GENERATION

EVOLUTIONARY ALGORITHMS

F(X)

20

EVOLUTIONARY ALGORITHMS

F(X)

21

EVOLUTIONARY ALGORITHMS

F(X)

22

ILLUMINATION SEARCH

FEATURE 2

-----h-----

FEATURE 1

23

DEEPHYPERION

Initialize map

—

Yes

<+ 49 <«

Done?

Generate Populate

Initial — Map
Population

Random
Selection
Update :

«

24

DEEPHYPERION

Initialize map

Generate

Yes

<+ 49 <«

Done?

Populate

S Initial — Map
Population

v

Random
Selection
Update :

«

MeanlLateralPosition

000000

000000

000000

000000

25

DEEPHYPERION

Generate

Initialize Mmap K Initial
Population

Yes

<+ 49 <«

Done?

Map

—

<

Populate

Map

v

Random
Selection

v
v

Evaluation

SDSteerin

RN RO N SR ON SN I S

MeanlLateralPosition

- 0.100

- 0.075

- 0.050

0.025

0.000

—0.025

—0.050

—0.075

—0.100

26

DEEPHYPERION

Generate

Initialize Mmap K Initial
Population

Yes

<+ 49 <«

Done?

Map

—

<

Populate

Map

v

Random
Selection

v
v

Evaluation

oSEdadigakaaRndiekiadaragizalaiadaidate®

MeanlLateralPosition

- 0.100

- 0.075

- 0.050

0.025

0.000

—0.025

—0.050

—0.075

—0.100

27

DEEPHYPERION

Generate

Initialize Mmap K Initial
Population

Yes

<+ 49 <«

Done?

Map

—

<

Populate

Map

v

Random
Selection

v
v

Evaluation

oxBapagizaiadalindidkaiaiatasigakaiaiaiidate®

MeanlLateralPosition

- 0.100

- 0.075

- 0.050

0.025

0.000

—0.025

—0.050

—0.075

—0.100

28

DEEPHYPERION

Generate

Initialize Mmap K Initial
Population

Yes

<+ 49 <«

Done?

Map

—

<

Populate

Map

v

Random
Selection

v
v

Evaluation

SDSteerin

wddadagidiladlinadabdbatasigaiaiaiaimdate®

MeanlLateralPosition

- 0.100

- 0.075

- 0.050

0.025

0.000

—0.025

—0.050

—0.075

—0.100

29

MODEL-BASED INPUT PERTURBATIONS - DIGITS

BITMAP SVG6 MODEL

start_point = (9.0, 20.85)
BezierSegment(

c1 =(9.0, 20.22),
c2=(10.22,17.30),
end_point =(11.70, 14.38)

)

SVG MODEL

start_point = (9.0, 20.85)
BezierSegment(

c1 =(9.0, 20.22),

c2 =(8.10, 17.30),
end_point =(11.70, 14.38)

)

BITMAP

- 18] - B~

30

MODEL-BASED INPUT PERTURBATIONS - ROADS

ROAD

80

60 -

40

201

CATMULL-ROM
MODEL

@
. .
.
. .
- .

—-20

20

100

80+

60 -

40

20+

CATMULL-ROM
MODEL

-20

20

100

80

60

40

20

ROAD

31

MISBERAVIOUR
DETECTION

MISBEHAVIOUR DETECTION

MNIST

— 80

30 —
; . | DeepHyperion
O - @)
v) 601 ' D N
£ 500 | DeepHyperion = eepjanus
= o
] — | DeepJanus D 40 | T T
2 1901 0 DLFuzz o -
© 1 S
S S 20—
0 S 0 —— === —= I , =
Mov Or Or MLP MLP MLP TurnCnt TurnCnt
Lum Lum Mov MinRad StdSA TurnCnt MinRad StdSA

wpto 10X

MORE MISBEHAVIOURS

EXPLORATION
EFFECTIVENESS

EXPLORATION EFFECTIVENESS

Filled Cells

300

200+

100

MNIST

—

| DeepHyperion
| Deepjanus
1 DLFuzz

%*

Filled Cells

VIOV
Lum

Ul
Lum

Ul
Mov

upTo OX

125;

100

757

50

25"

| DeepHyperion

MAP EXPLORATION

% | DeepjJanus
—— :
-
— — ‘
MLP MLP MLP lTurnCnt TurnCnt
MinRad StdSA TurnCnt MinRad StdSA

MISBEHAVIOUR
CHARACTERISATION

MISBEHAVIOUR CHARACTERISATION

Misbehaviour Probability Map (Run 1)

AN
()
p .
)
i’
®
()
LL

Feature 1

Misbehaviour Probability Map (Run 2)

AN
()
| .
)
i’
®
()
LL

Feature 1

Misbehaviour Probability Map (Run 3)

Feature 2

Feature 1

Feature 2

Final Misbehaviour Probability Map

Feature 1

1.0

0.8

0.6

0.4

0.2

0.0

37

MISBEHAVIOUR CHARACTERISATION

MNIST

BEAMNG

109.0-

210.0: e
192.5-]
_ 92.8-
175.0-]
: 84.8-
157.5- :
: 76.7-
140.0- n -
_ g 68.6-
122.5- O |
g : GCC 60.5-
105.0- = .
- : = 524
87.5-]
- 44,3
70.0-)
‘ 36.2-
52.5- -
' 28.2-
35.0- -
' 20.1-
17.5- _

' 12.0- -

0.0 3 9 & & A © & 9
NOEPN PN OEPNRN RN PN NN RPN PN NN

Mean Lateral Position

USAGE: TEST ADEQUACY CRITERION

VS

Test Generator 1 [E@] @] Test Generator 2

Feature 2

Feature 1

Feature 2

Feature 1

2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)

SBST Tool Competition 2022

Alessio Gambi
alessio.gambi@uni-passau.de
University of Passau, Germany

Vincenzo Riccio
vincenzo.riccio@usi.ch
Software Institute - USI, Switzerland

ABSTRACT

We report on the organization, challenges, and results of the tenth
edition of the Java Unit Testing Competition as well as the second
edition of the Cyber-Physical Systems (CPS) Testing Competition.
Java Unit Testing Competition. Seven tools, i.e., BBC, EvoSuite,
Kex, Kex-Reflection, Randoop, UTBot, and UTBot-Mocks, were
executed on a benchmark with 65 classes sampled from four open-
source Java projects, for two time budgets: 30 and 120 seconds.
CPS Testing Tool Competition. Six tools, i.e., AdaFrenetic, Am-
bieGen, FreneticV, GenRL, EvoMBT and WOGAN competed on
testing two driving agents by generating simulation-based tests.
We considered one configuration for each test subject and evaluated
the tools’ effectiveness and efficiency as well as the failure diversity.

This paper describes our methodology, the statistical analysis of
the results together with the competing tools, and the challenges
faced while running the competition experiments.

CCS CONCEPTS

« Software and its engineering — Search-based software engi-
neering; Automatic programming; Software testing and de-

bugging.

KEYWORDS

Tool Competition, Software Testing, Test Case Generation, Unit
Testing, Java, Cyber-Physical Systems, Autonomous Vehicles, Search
Based Software Engineering

ACM Reference Format:

Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti.
2022. SBST Tool Competition 2022. In The 15th Search-Based Software Testing
Workshop (SBST22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3526072.3527538

1 INTRODUCTION

This year we organized the tenth edition of the SBST Tool Competi-
tion. The competition has the goal to experiment with testing tools
for a diversified set of systems and domains. As for recent years, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST'22 , May 9, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9318-8/22/05...$15.00
https://doi.org/10.1145/3526072.3527538

Gunel Jahangirova
gunel jahangirova@usi.ch
Software Institute - USI, Switzerland

Fiorella Zampetti
fiorella.zampetti@unisannio.it
University of Sannio, Italy

invited researchers to participate in the competition with their unit
test generation tools for Java and system test generation tools for
Cyber-Physical Systems (CPSs). Java testing tools are evaluated
against a benchmark with respect to code and mutation coverage,
whereas CPS testing tools are evaluated against self-driving cars
software in a simulation environment.

Report Structure: Section 2 and Section 3, report the organi-
zation, challenges, and results of the JUnit and CPS testing tool
competitions.

2 THE JUNIT TESTING COMPETITION

The tenth edition of the Java Testing Tool Competition received
the highest (six) number of submitted tools, namely BBC [5], Evo-
Suite [17], Kex [3], Kex-Reflection [6], UTBot [7] and UTBot-Mocks.
Furthermore, similarly to previous editions, we used Randoop [29]
as a baseline for comparison.

Each tool has been executed on 65 classes under test (CUTs)
sampled from four out of six projects used also in the previous
edition [31]. Starting from the results of the previous edition, we
realized that the tools used for coverage and mutation analysis are
not able to properly work on projects relying on a recent version
of Java. For this reason, we relied on the four projects for which
we can obtain both code and mutation coverage.

The competing tools have been compared by using line, branch
and mutant coverage metrics, for two different time budgets, i.e.,
30 and 120 seconds.

In order to guarantee a fair comparison among the competing
tools, the execution of the tools for generating test suites and their
evaluation, has been carried out by using a dockerized infrastruc-
ture [15] hosted on GitHub at:

https://github.com/JUnitContest/junitcontest.

The remainder of the JUnit testing competition report is struc-
tured as follows. Section 2.1 describes the benchmark being adopted
once having described the selection criteria. Section 2.2 briefly de-
scribes the competing tools, while Section 2.3 presents the method-
ology for running the competition. Section 2.4, instead, reports and
discusses the results. Finally, Section 2.5 concludes the report with
remarks and ideas for future improvements.

2.1 The benchmark subjects of the JUnit
Testing Competition

Similarly to previous editions, the selection of the projects and

classes under test (CUTs) to use as benchmark for test case genera-

tion has been done by considering three criteria: (i) projects must

belong to different application domains [17]; (ii) projects must be

IEEE/ACM SBST TOOL COMPETITION 2022

EXTENSION: DEEPHYPERION-CS

Generate Populate

Initialize map

—> NICT —— Map

Population

) 2

\~ '¢
No ~.-¢-"
Yes U
pdate :
== - -
one!

Y 4
/ 4
Random
“ Selection
q
4

4

)
|

40

EXTENSION: DEEPHYPERION-CS

Generate

e 1 " Populate
Initialize map s Initial — Map

Population

TIMES A MUTANT OF X
IS PLACED IN THE MAP

TIMES X IS SELECTED

Contribution-
guided

CONTRIBUTION
SCORE (X) =

Selection

Yes

Evaluation

Done?

Efficient and Effective Feature Space Exploration for Testing Deep Learning

Systems

TAHEREH ZOHDINASAB?, Universita della Svizzera Italiana, Switzerland
VINCENZO RICCIO, Universita della Svizzera Italiana, Switzerland
ALESSIO GAMBI, University of Passau, Germany

PAOLO TONELLA, Universita della Svizzera Italiana, Switzerland

Assessing the quality of Deep Learning (DL) systems is crucial, as they are increasingly adopted in safety-critical domains. Researchers
have proposed several input generation techniques for DL systems. While such techniques can expose failures, they do not explain
which features of the test inputs influenced the system’s (mis-) behaviour. DEEPHYPERION was the first test generator to overcome
this limitation by exploring the DL systems’ feature space at large. In this paper, we propose DEEPHYPERION-CS, a test generator for
DL systems which enhances DEEpPHYPERION by promoting the inputs that contributed more to feature space exploration during the
previous search iterations. We performed an empirical study involving two different test subjects (i.e., a digit classifier and a lane-
keeping system for self-driving cars). Our results proved that the contribution-based guidance implemented within DEepPHYPERION-CS
outperforms state-of-the-art tools and significantly improves the efficiency and the effectiveness of DEePHYPERION. DEEPHYPERION-CS
exposed significantly more misbehaviours for 5 out of 6 feature combinations and was up to 65% more efficient than DEepPHYPERION in
finding misbehaviour-inducing inputs and exploring the feature space. DEepHYPERION-CS was useful for expanding the datasets used
to train the DL systems, populating up to 200% more feature map cells than the original training set.

CCS Concepts: « Software and its engineering — Software testing and debugging.
Additional Key Words and Phrases: software testing, deep learning, search based software engineering, self-driving cars

ACM Reference Format:
Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021. Efficient and Effective Feature Space Exploration for
Testing Deep Learning Systems. 1, 1 (August 2021), 38 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Using Deep Learning (DL) has become widespread for modern software systems that must process complex inputs
and timely solve challenging tasks. For example, image classifiers [31, 62] can analyse images to diagnose diseases,
while intelligent driving agents use sensor information (e.g., from cameras and LiDARs) to drive vehicles [10]. Since DL
systems are applied also in safety-critical domains, ensuring their dependability is literally vital.

Unlike traditional software, DL systems’ behaviour is not explicitly coded, being instead indirectly learned from
training examples [49]. This fundamental difference of DL systems from traditional software has profound implications
on how their quality is assessed.

Authors’ addresses: Tahereh Zohdinasab, tahereh.zohdinasab@usi.ch, Universita della Svizzera Italiana, Lugano, Switzerland, 6900; Vincenzo Riccio,
Universita della Svizzera Italiana, Lugano, Switzerland, vincenzo.riccio@usi.ch; Alessio Gambi, University of Passau, Passau, Germany, alessio.gambi@uni-
passau.de; Paolo Tonella, Universita della Svizzera Italiana, Lugano, Switzerland, paolo.tonella@usi.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

ACM TRANSACTIONS ON SOFTWARE
ENGINEERING AND METHODOLOGY (TOSEM)
2022

!'rf

PHRHRERERRPRHERERNNNNNN

6.0 -
4.9 -
3.8 -
2.8 -
1.7 -
0.6 -
9.5 -
8.4 -
7.3 -
6.2 -
52-
4.1 -
3.0 -
1.9 -
0.8 -
9.8 -
8.7 -
7.6 -
6.5 -
5.4 -
4.3 -
3.2 -
2.2 -
1.1-
0.0 -

DBRRSIAPRARARARARARARYSS

DitrmAanec

- 0.100

- 0.075

OFRNNWRARUIONOOOORLNNWRARUIOONO0DOOWOO
[T T N

- 0.050

PHRHRERERRPRHERERNNNNNN

6.
4.
3.
2.
1.
0.
0.
8.
7.
6.
5.
4.
3.
1.
0.
0.
8.
7.
6.
5.
4.
3.
2.
1.
0

DBRRSIAPRARARARARARARYSS

DitrmAanec

Input Database

Pilot Study

Initial Feature
Definition and
subset of inputs
Labelling

Labelled Inputs

Open Coding

e R
Consensus Meeting

Label Comparison
A and Disagreements

-

Resolution

Final Labelling

Remaining
Inputs Labelling

k’
A

)

- 0.025

-

0.000

—0.025
]

—0.050

~0.075

]

—0.100

Candidate
Metrics Design

Features

Metric Identification

A Metrics Validation and
— Correlation with
Labels Computation

Metrics

Candidate Metrics

43

...r.:l.

¥l

DBRRSIAPRARARARARARARYSS

DitrmAanec

PHRHRERERRPRHERERNNNNNN

ORNWAUVIONPOORWAUINNOOORNWERS
ORNNWRARUIONOOOOOORNNWRARUIOINOOO0OOO
| | I | | | | | I

0.100

0.075

0.050

0.025

0.000

—0.025

—0.050

—0.075

—0.100

Input Database

Open Coding

Pilot Study

Initial Feature
Definition and
subset of inputs
Labelling

e R
Consensus Meeting

Label Comparison
A and Disagreements

-

Resolution

Labelled Inputs

Final Labelling

Remaining
Inputs Labelling

k’
A

)

Metric Identification

Candidate
Metrics Design

A

—_—

Metrics Validation and
Correlation with
Labels Computation

DeepHyperion
DeepJanus

Mapped Misb.

Misb. Sparseness

TurnCnt MLP MLP
MinRad MinRad TurnCnt

TurnCnt
StdSA

MLP
StdSA

Features

Metrics

Candidate Metrics

L4

Input Database

Open Coding

~

Pilot Study (Consensus Meeting\ Final Labelling

Initial Feature

Definition and Label Comparison
subset of inputs A and Disagreements
I Labelling Resolution

Remaining
Inputs Labelling

PHRHRERERRPRHERERNNNNNN

OHNWAULOINOOOHWARUONOOORNWROS
ORNNWAUONOOOORNNWRUIONW®OO

Labelled Inputs k

7’
[
]
Metric Identification
I

.'II'-:'.

A Metrics Validation and

Candidate

Metrics Design —* Correlation with

b‘%’b%béb\ &%&%%%XXW%W&&%&Q Features Candidate Metrics rabels Somputaton Metrics

DitrmAanec

DeepHyperion
DeepJanus

Mapped Misb.

Misb. Sparseness

TurnCnt TurnCnt MLP MLP MLP
StdSA MinRad MinRad TurnCnt StdSA

