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ABSTRACT

Deep Learning (DL) has been successfully applied to a wide range
of application domains, including safety-critical ones. Several DL
testing approaches have been recently proposed in the literature
but none of them aims to assess how different interpretable features
of the generated inputs affect the system’s behaviour.

In this paper, we resort to Illumination Search to find the highest-
performing test cases (i.e., misbehaving and closest to misbehaving),
spread across the cells of a map representing the feature space of the
system. We introduce a methodology that guides the users of our
approach in the tasks of identifying and quantifying the dimensions
of the feature space for a given domain. We developed DEepHY-
PERION, a search-based tool for DL systems that illuminates, i.e.,
explores at large, the feature space, by providing developers with
an interpretable feature map where automatically generated inputs
are placed along with information about the exposed behaviours.
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1 INTRODUCTION

Deep Learning (DL) has become an essential component of com-
plex software systems, including autonomous vehicles and medical
diagnosis systems. As a consequence, the problem of ensuring the
dependability of DL systems is critical.

Unlike traditional software, in which developers explicitly pro-
gram the system’s behaviour, one peculiarity of DL systems is that
they mimic the human ability to learn how to perform a task from
training examples [22]. Therefore, it is essential to understand to
what extent they can be trusted in response to the diversity of
inputs they will process once deployed in the real world, as they
could face scenarios that might be not sufficiently represented in
the data from which they have learned [13].

As discussed in the comprehensive work by Riccio et al. [26] and
by Zhang et al. [34], the Software Engineering research community
is working hard at adequately testing the functionality of DL sys-
tems by proposing a steadily growing number of approaches. Since
part of the program logic of these systems is determined by the
training data, traditional code coverage metrics are not effective
in determining whether their logic has been adequately exercised.
Therefore, recent testing solutions aim at maximising ad hoc white-
box adequacy metrics, such as neuron [12, 24, 31, 33] or surprise
coverage [15], or at exposing misbehaviours [1, 10, 35]. A limitation
of these approaches is that their output cannot be directly used to
explain the behaviour of the DL system under test, e.g. coverage
reports do not provide enough information to understand what
input features might have caused misbehaviours. Consequently, the
usefulness of these approaches for the developers is strongly lim-
ited in practice. Few approaches [2, 27] use behavioural properties
during test generation, but none of them considers the combination
of interpretable features of the DL system under test as the target of
test generation. This hinders them from exploring the feature space
at large and providing a detailed explanation on how the system
behaves for qualitatively different inputs.

In this paper, we introduce a novel way to assess the quality
of DL systems by automatically generating a large, diverse set
of high-performing (i.e., misbehaving or near-misbehaving), but
qualitatively different test inputs that provide developers with a
human-interpretable picture of the system’s quality. With our ap-
proach, developers can understand how different structural and
behavioural features of the inputs combine to affect the system’s
performance. To this aim we developed DEEPHYPERION, an open
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ABSTRACT

We report on the organization, challenges, and results of the tenth
edition of the Java Unit Testing Competition as well as the second
edition of the Cyber-Physical Systems (CPS) Testing Competition.
Java Unit Testing Competition. Seven tools, i.e., BBC, EvoSuite,
Kex, Kex-Reflection, Randoop, UTBot, and UTBot-Mocks, were
executed on a benchmark with 65 classes sampled from four open-
source Java projects, for two time budgets: 30 and 120 seconds.
CPS Testing Tool Competition. Six tools, i.e., AdaFrenetic, Am-
bieGen, FreneticV, GenRL, EvoMBT and WOGAN competed on
testing two driving agents by generating simulation-based tests.
We considered one configuration for each test subject and evaluated
the tools’ effectiveness and efficiency as well as the failure diversity.

This paper describes our methodology, the statistical analysis of
the results together with the competing tools, and the challenges
faced while running the competition experiments.

CCS CONCEPTS

« Software and its engineering — Search-based software engi-
neering; Automatic programming; Software testing and de-

bugging.

KEYWORDS
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Testing, Java, Cyber-Physical Systems, Autonomous Vehicles, Search
Based Software Engineering

ACM Reference Format:

Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti.
2022. SBST Tool Competition 2022. In The 15th Search-Based Software Testing
Workshop (SBST22 ), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3526072.3527538

1 INTRODUCTION

This year we organized the tenth edition of the SBST Tool Competi-
tion. The competition has the goal to experiment with testing tools
for a diversified set of systems and domains. As for recent years, we
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invited researchers to participate in the competition with their unit
test generation tools for Java and system test generation tools for
Cyber-Physical Systems (CPSs). Java testing tools are evaluated
against a benchmark with respect to code and mutation coverage,
whereas CPS testing tools are evaluated against self-driving cars
software in a simulation environment.

Report Structure: Section 2 and Section 3, report the organi-
zation, challenges, and results of the JUnit and CPS testing tool
competitions.

2 THE JUNIT TESTING COMPETITION

The tenth edition of the Java Testing Tool Competition received
the highest (six) number of submitted tools, namely BBC [5], Evo-
Suite [17], Kex [3], Kex-Reflection [6], UTBot [7] and UTBot-Mocks.
Furthermore, similarly to previous editions, we used Randoop [29]
as a baseline for comparison.

Each tool has been executed on 65 classes under test (CUTs)
sampled from four out of six projects used also in the previous
edition [31]. Starting from the results of the previous edition, we
realized that the tools used for coverage and mutation analysis are
not able to properly work on projects relying on a recent version
of Java. For this reason, we relied on the four projects for which
we can obtain both code and mutation coverage.

The competing tools have been compared by using line, branch
and mutant coverage metrics, for two different time budgets, i.e.,
30 and 120 seconds.

In order to guarantee a fair comparison among the competing
tools, the execution of the tools for generating test suites and their
evaluation, has been carried out by using a dockerized infrastruc-
ture [15] hosted on GitHub at:

https://github.com/JUnitContest/junitcontest.

The remainder of the JUnit testing competition report is struc-
tured as follows. Section 2.1 describes the benchmark being adopted
once having described the selection criteria. Section 2.2 briefly de-
scribes the competing tools, while Section 2.3 presents the method-
ology for running the competition. Section 2.4, instead, reports and
discusses the results. Finally, Section 2.5 concludes the report with
remarks and ideas for future improvements.

2.1 The benchmark subjects of the JUnit
Testing Competition

Similarly to previous editions, the selection of the projects and

classes under test (CUTs) to use as benchmark for test case genera-

tion has been done by considering three criteria: (i) projects must

belong to different application domains [17]; (ii) projects must be

IEEE/ACM SBST TOOL COMPETITION 2022
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Efficient and Effective Feature Space Exploration for Testing Deep Learning

Systems
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Assessing the quality of Deep Learning (DL) systems is crucial, as they are increasingly adopted in safety-critical domains. Researchers
have proposed several input generation techniques for DL systems. While such techniques can expose failures, they do not explain
which features of the test inputs influenced the system’s (mis-) behaviour. DEEPHYPERION was the first test generator to overcome
this limitation by exploring the DL systems’ feature space at large. In this paper, we propose DEEPHYPERION-CS, a test generator for
DL systems which enhances DEEpPHYPERION by promoting the inputs that contributed more to feature space exploration during the
previous search iterations. We performed an empirical study involving two different test subjects (i.e., a digit classifier and a lane-
keeping system for self-driving cars). Our results proved that the contribution-based guidance implemented within DEepPHYPERION-CS
outperforms state-of-the-art tools and significantly improves the efficiency and the effectiveness of DEePHYPERION. DEEPHYPERION-CS
exposed significantly more misbehaviours for 5 out of 6 feature combinations and was up to 65% more efficient than DEepPHYPERION in
finding misbehaviour-inducing inputs and exploring the feature space. DEepHYPERION-CS was useful for expanding the datasets used
to train the DL systems, populating up to 200% more feature map cells than the original training set.

CCS Concepts: « Software and its engineering — Software testing and debugging.
Additional Key Words and Phrases: software testing, deep learning, search based software engineering, self-driving cars
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1 INTRODUCTION

Using Deep Learning (DL) has become widespread for modern software systems that must process complex inputs
and timely solve challenging tasks. For example, image classifiers [31, 62] can analyse images to diagnose diseases,
while intelligent driving agents use sensor information (e.g., from cameras and LiDARs) to drive vehicles [10]. Since DL
systems are applied also in safety-critical domains, ensuring their dependability is literally vital.

Unlike traditional software, DL systems’ behaviour is not explicitly coded, being instead indirectly learned from
training examples [49]. This fundamental difference of DL systems from traditional software has profound implications
on how their quality is assessed.
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